40,759 research outputs found

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    Gamma-Ray Bursts are Produced Predominately in the Early Universe

    Full text link
    It is known that some observed gamma-ray bursts (GRBs) are produced at cosmological distances and that the GRB production rate may follow the star formation rate. We model the BATSE-detected intensity distribution of long GRBs in order to determine their space density distribution and opening angle distribution. Our main results are: the lower and upper distance limits to the GRB production are z 0.24 and >10, respectively; the GRB opening angle follows an exponential distribution and the mean opening angle is about 0.03 radians; and the peak luminosity appears to be a better standard candle than the total energy of a GRB.Comment: 12 pages, 2 figur

    Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection

    Get PDF
    We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions

    Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands

    Full text link
    Recent proposals of topological flat band (TFB) models have provided a new route to realize the fractional quantum Hall effect (FQHE) without Landau levels. We study hard-core bosons with short-range interactions in two representative TFB models, one of which is the well known Haldane model (but with different parameters). We demonstrate that FQHE states emerge with signatures of even number of quasi-degenerate ground states on a torus and a robust spectrum gap separating these states from higher energy spectrum. We also establish quantum phase diagrams for the filling factor 1/2 and illustrate quantum phase transitions to other competing symmetry-breaking phases.Comment: 4 pages, 6 figure

    Time evolution, cyclic solutions and geometric phases for general spin in an arbitrarily varying magnetic field

    Full text link
    A neutral particle with general spin and magnetic moment moving in an arbitrarily varying magnetic field is studied. The time evolution operator for the Schr\"odinger equation can be obtained if one can find a unit vector that satisfies the equation obeyed by the mean of the spin operator. There exist at least 2s+12s+1 cyclic solutions in any time interval. Some particular time interval may exist in which all solutions are cyclic. The nonadiabatic geometric phase for cyclic solutions generally contains extra terms in addition to the familiar one that is proportional to the solid angle subtended by the closed trace of the spin vector.Comment: revtex4, 8 pages, no figur

    TimeMachine: Timeline Generation for Knowledge-Base Entities

    Full text link
    We present a method called TIMEMACHINE to generate a timeline of events and relations for entities in a knowledge base. For example for an actor, such a timeline should show the most important professional and personal milestones and relationships such as works, awards, collaborations, and family relationships. We develop three orthogonal timeline quality criteria that an ideal timeline should satisfy: (1) it shows events that are relevant to the entity; (2) it shows events that are temporally diverse, so they distribute along the time axis, avoiding visual crowding and allowing for easy user interaction, such as zooming in and out; and (3) it shows events that are content diverse, so they contain many different types of events (e.g., for an actor, it should show movies and marriages and awards, not just movies). We present an algorithm to generate such timelines for a given time period and screen size, based on submodular optimization and web-co-occurrence statistics with provable performance guarantees. A series of user studies using Mechanical Turk shows that all three quality criteria are crucial to produce quality timelines and that our algorithm significantly outperforms various baseline and state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and other info available at http://cs.stanford.edu/~althoff/timemachine
    corecore