292 research outputs found

    Ordering of small particles in one-dimensional coherent structures by time-periodic flows

    Full text link
    Small particles transported by a fluid medium do not necessarily have to follow the flow. We show that for a wide class of time-periodic incompressible flows inertial particles have a tendency to spontaneously align in one-dimensional dynamic coherent structures. This effect may take place for particles so small that often they would be expected to behave as passive tracers and be used in PIV measurement technique. We link the particle tendency to form one-dimensional structures to the nonlinear phenomenon of phase locking. We propose that this general mechanism is, in particular, responsible for the enigmatic formation of the `particle accumulation structures' discovered experimentally in thermocapillary flows more than a decade ago and unexplained until now

    The JEREMI-project on thermocapillary convection in liquid bridges. Part A : Overview of particle accumulation structures

    Get PDF
    The rapid accumulation of particles suspended in a thermocapillary liquid bridge is planned to be investigated during the JEREMI experiment on the International Space Station scheduled for 2016. An overview is given of the current status of experimental and numerical investigations of this phenomenon

    Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches

    Get PDF
    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    A Randomized Study Evaluating Oral Fusidic Acid (CEM-102) in Combination With Oral Rifampin Compared With Standard-of-Care Antibiotics for Treatment of Prosthetic Joint Infections: A Newly Identified Drug–Drug Interaction

    Get PDF
    BACKGROUND: Fusidic acid (FA) has been used for decades for bone infection, including prosthetic joint infection (PJI), often in combination with rifampin (RIF). An FA/RIF pharmacokinetic interaction has not previously been described. METHODS: In a phase 2 open-label randomized study, we evaluated oral FA/RIF vs standard-of-care (SOC) intravenous antibiotics for treatment of hip or knee PJI. Outcome assessment occurred at reimplantation (week 12) for subjects with 2-stage exchange, and after 3 or 6 months of treatment for subjects with hip or knee debride and retain strategies, respectively. RESULTS: Fourteen subjects were randomized 1:1 to FA/RIF or SOC. Pharmacokinetic profiles were obtained for 6 subjects randomized to FA/RIF. FA concentrations were lower than anticipated in all subjects during the first week of therapy, and at weeks 4 and 6, blood levels continued to decline. By week 6, FA exposures were 40%-45% lower than expected. CONCLUSIONS: The sponsor elected to terminate this study due to a clearly illustrated drug-drug interaction between FA and RIF, which lowered FA levels to a degree that could influence subject outcomes. Optimization of FA exposure if used in combination with RIF should be a topic of future research. CLINICAL TRIALS REGISTRATION: NCT01756924

    Radiative capture and electromagnetic dissociation involving loosely bound nuclei: the 8^8B example

    Get PDF
    Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of 8^8B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the 8^8B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.Comment: Submitted to Phys. Rev. C. 10 pages, 7 figure
    • …
    corecore