78 research outputs found
Electronic band structure of three-dimensional topological insulators with different stoichiometry composition
We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, AIVBi4Te7âxSex (AIV= Sn, Pb;x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.The authors acknowledge financial support from the Saint Petersburg State University (Grant No. 40990069), the Tomsk State University competitiveness improvement program (Grant No. 8.1.01.2018), the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9), and the project EUROFEL-ROADMAP ESFRI. This work was also partly supported by the Italian Ministry of Education, Universities and Research (MIUR) through project PON03PE_00092_1 (EOMAT) and by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EIF/MQM/Elm-Tehsil-1-2016-
1(26)-71/01/4-M-33). S.V.E. acknowledges support from the
Russian Science Foundation (Grant No. 18-12-00169) for part
of the electronic band structure calculations.Peer reviewe
One-dimensional Rashba states with unconventional spin texture in Bi chains
Spin-polarized electrons confined in low-dimensional structures are of high interest for spintronics applications. Here, we investigate the electronic structure of an ordered array of Bi monomer and dimer chains on the Ag(110) surface. By means of spin-resolved photoemission spectroscopy, we find Rashba-Bychkov split bands crossing the Fermi level with one-dimensional constant energy contours. These bands are up-spin polarized for positive wave vectors and down-spin polarized for negative wave vectors, at variance with the Rashba-Bychkov model that predicts a pair of states with opposite spin in each half of the surface Brillouin zone. Density functional theory shows that spin-selective hybridization with the Ag bulk bands originates this unconventional spin texture
Mechanical properties of freely suspended atomically thin dielectric layers of mica
We have studied the elastic deformation of freely suspended atomically thin
sheets of muscovite mica, a widely used electrical insulator in its bulk form.
Using an atomic force microscope, we carried out bending test experiments to
determine the Young's modulus and the initial pre-tension of mica nanosheets
with thicknesses ranging from 14 layers down to just one bilayer. We found that
their Young's modulus is high (190 GPa), in agreement with the bulk value,
which indicates that the exfoliation procedure employed to fabricate these
nanolayers does not introduce a noticeable amount of defects. Additionally,
ultrathin mica shows low pre-strain and can withstand reversible deformations
up to tens of nanometers without breaking. The low pre-tension and high Young's
modulus and breaking force found in these ultrathin mica layers demonstrates
their prospective use as a complement for graphene in applications requiring
flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5,
Number 8 (2012
Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?
Graphite and hexagonal boron nitride (h-BN) are two prominent members of the
family of layered materials possessing a hexagonal lattice. While graphite has
non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N
bonds resulting in different optimal stacking modes of the two materials in
bulk form. Furthermore, the static polarizabilities of the constituent atoms
considerably differ from each other suggesting large differences in the
dispersive component of the interlayer bonding. Despite these major differences
both materials present practically identical interlayer distances. To
understand this finding, a comparative study of the nature of the interlayer
bonding in both materials is presented. A full lattice sum of the interactions
between the partially charged atomic centers in h-BN results in vanishingly
small monopolar electrostatic contributions to the interlayer binding energy.
Higher order electrostatic multipoles, exchange, and short-range correlation
contributions are found to be very similar in both materials and to almost
completely cancel out by the Pauli repulsions at physically relevant interlayer
distances resulting in a marginal effective contribution to the interlayer
binding. Further analysis of the dispersive energy term reveals that despite
the large differences in the individual atomic polarizabilities the
hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C
coefficient in the hexagonal bulk form resulting in very similar dispersive
contribution to the interlayer binding. The overall binding energy curves of
both materials are thus very similar predicting practically the same interlayer
distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table
Phonon-assisted carrier transport through a lattice-mismatched interface
We showed the distinctive unconventional junction effect of MoS2 junctions: a lattice mismatched MoS2. It is unique to observe the difference originated from the atomic interrelation at the interface. The results revealed the dominant scattering source at the conventional naturally stepwise junction, while the misorientationally stacked layer exhibited effectively decoupled behavior and a significantly smaller junction resistance via phonon assist carrier. Therefore, our finding in this paper clearly shows the different mechanisms in carrier transport at both junction interface of MoS2
Insight from an Italian Delphi Consensus on EVAR feasibility outside the instruction for use: the SAFE EVAR Study
BACKGROUND: The SAfety and FEasibility of standard EVAR outside the instruction for use (SAFE-EVAR) Study was designed to define the attitude of Italian vascular surgeons towards the use of standard endovascular repair (EVAR) for infrarenal abdominal aortic aneurysm (AAA) outside the instruction for use (IFU) through a Delphi consensus endorsed by the Italian Society of Vascular and Endovascular Surgery (Societa Italiana di Chirurgia Vascolare ed Endovascolare - SICVE). METHODS: A questionnaire consisting of 26 statements was developed, validated by an 18 -member Advisory Board, and then sent to 600 Italian vascular surgeons. The Delphi process was structured in three subsequent rounds which took place between April and June 2023. In the first two rounds, respondents could indicate one of the following five degrees of agreement: 1) strongly agree; 2) partially agree; 3) neither agree nor disagree; 4) partially disagree; 5) strongly disagree; while in the third round only three different choices were proposed: 1) agree; 2) neither agree nor disagree; 3) disagree. We considered the consensus reached when >70% of respondents agreed on one of the options. After the conclusion of each round, a report describing the percentage distribution of the answers was sent to all the participants. RESULTS: Two -hundred -forty-four (40.6%) Italian Vascular Surgeons agreed to participate the first round of the Delphi Consensus; the second and the third rounds of the Delphi collected 230 responders (94.3% of the first -round responders). Four statements (15.4%) reached a consensus in the first rounds. Among the 22 remaining statements, one more consensus (3.8%) was achieved in the second round. Finally, seven more statements (26.9%) reached a consensus in the simplified last round. Globally, a consensus was reached for almost half of the proposed statements (46.1%). CONCLUSIONS: The relatively low consensus rate obtained in this Delphi seems to confirm the discrepancy between Guideline recommendations and daily clinical practice. The data collected could represent the source for a possible guidelines' revision and the proposal of specific Good Practice Points in all those aspects with only little evidence available
Electronic structure of one-dimensional copper oxide chains in LiCu2O2 from angle-resolved photoemission and optical spectroscopy
Angle-resolved photoemission (ARPES) and optical measurements were performed on single crystal samples of LiCu2O2, an antiferromagnetic S=1/2 spin-chain compound. The ARPES spectra show several dispersive branches associated with hybrid copper-oxygen states. The occurrence of the valence band maximum halfway between the center and the edge of the Brillouin zone, and the complex spectral line shapes are not reproduced by the existing calculations of the electronic structure. We suggest that they can be interpreted within a one-dimensional scenario of strongly correlated antiferromagnetic insulators. The combination of ARPES and optics allows us to estimate the magnitude of the charge-transfer gap (Delta=1.95 eV). Moreover, the temperature-dependent optical conductivity bears signatures of the three different magnetic phases of this material
Photoemission and optical studies of ZrSe3, HfSe3, and ZrS3
Angle-resolved photoemission spectroscopy (ARPES) and optical measurements were performed on single crystal samples of ZrSe3, HfSe3, and ZrS3, which belong to the class of low-dimensional band insulators. By ARPES, we traced the dispersion of the (S 3p, Se 4p) p-derived valence states. In all cases, the topmost band exhibits energy splitting increasing from S to Se, which we attribute to the spin-orbit interaction, similar to recent observations in the related layered dichalcogenides. The combination of optical and photoemission results allows us to address the issue of the gap feature in the absorption spectra and to characterize the electronic and vibrational properties of ZrSe3, HfSe3, and ZrS3
Photoemission as a probe of coexisting and conflicting periodicities in low-dimensional solids
When two different periodic potentials are present at the same time in a solid, the electron wavefunctions must conform to the resulting overall periodicity. It is the case of the broken-symmetry phases which are often observed in low-dimensional systems. The rearrangement of the electronic states has some interesting and perhaps unexpected consequences on the momentum distribution of the spectral weight, which can be measured in an ARPES experiment
Structural investigation of InSe layered semiconductors
During the last decade, III-VI layered semiconductors (GaSe, InSe, GaS, etc.) have emerged as potential candidates for various applications, such as FET and optoelectronic devices. The properties of this class of layered materials are strongly dependent on their structure, and the existence of different polytypes makes it necessary the identification of the structural phase. In this work, we have performed a detailed investigation of the crystal structure and morphology of bulk InSe, by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The combination of the employed techniques allowed to identify the structural phase of InSe samples (epsilon polytype). Most importantly, we show that only by crossing the information of each technique it is possible to unambiguously discern between similar polytypes
- âŠ