3,438 research outputs found

    The next-to-leading order jet vertex for Mueller-Navelet and forward jets revisited

    Full text link
    We recalculate, completely within the original BFKL approach and at the next-to-leading order, the jet vertex relevant for the production of Mueller-Navelet jets in proton collisions and of forward jets in DIS. We consider both processes with incoming quark and gluon. The starting point is the definition of quark and gluon impact factors in the BFKL approach. Following this procedure we show explicitly that all infrared divergences cancel when renormalized parton densities are considered. We compare our results for the vertex with the former calculation of Refs. [1,2] and, in the case of the quark contribution, clarify the discrepancy present in the literature.Comment: 28 pages, 3 figures; a few references added; modified Abstract, Introduction and Summary to take into account that the equivalence between the results of Bartels et al. (Refs.[1,2]) and those of Colferai et al. (Ref.[23]) has been establishe

    How Does a Child with Sensory Processing Problems Play?

    Get PDF
    The occupation of play during one’s childhood years serves as a foundation for the development of future occupations in an individual’s life. By understanding a child’s extant play skills and deficits, one may then provide the necessary interventions needed to promote development and successful growth into new occupations. The purpose of this paper was to understand how a child with sensory processing deficits plays in a naturalistic environment. The findings revealed an interplay between the child’s underlying sensory processing deficits and his play skills and behaviors. Increased understanding of how a child with sensory processing deficits plays will provide information for other occupational therapists and help in the treatment of children with similar deficits

    Testing the gamma-ray burst variability/peak luminosity correlation on a Swift homogeneous sample

    Full text link
    We test the gamma-ray burst correlation between temporal variability and peak luminosity of the γ\gamma-ray profile on a homogeneous sample of 36 Swift/BAT GRBs with firm redshift determination. This is the first time that this correlation can be tested on a homogeneous data sample. The correlation is confirmed, as long as the 6 GRBs with low luminosity (<5x10^{50} erg s^{-1} in the rest-frame 100-1000 keV energy band) are ignored. We confirm that the considerable scatter of the correlation already known is not due to the combination of data from different instruments with different energy bands, but it is intrinsic to the correlation itself. Thanks to the unprecedented sensitivity of Swift/BAT, the variability/peak luminosity correlation is tested on low-luminosity GRBs. Our results show that these GRBs are definite outliers.Comment: Accepted for Publication in MNRAS. 10 pages, 5 figures, 3 table

    Blazar surveys with WMAP and Swift

    Get PDF
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 101510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    Swift-XRT observation of 34 new INTEGRAL/IBIS AGNs: discovery of Compton thick and other peculiar sources

    Full text link
    For a significant number of the sources detected at high energies (>10 keV) by the INTEGRAL/IBIS and Swift/BAT instruments there is either a lack information about them in the 2-10 keV range or they are totally unidentified. Herein, we report on a sample of 34 IBIS AGN or AGN candidate objects for which there is X-ray data in the Swift/XRT archive. Thanks to these X-ray follow up observations, the identification of the gamma ray emitters has been possible and the spectral shape in terms of photon index and absorption has been evaluated for the first time for the majority of our sample sources. The sample, enlarged to include 4 more AGN already discussed in the literature, has been used to provide photon index and column density distribution. We obtain a mean value of 1.88 with a dispersion of 0.12, i.e. typical of an AGN sample. Sixteen objects (47%) have column densities in excess of 10^{22} cm^{-2} and, as expected, a large fraction of the absorbed sources are within the Sey 2 sample. We have provided a new diagnostic tool (NH versus F(2-10)keV/F(20-100)keV softness ratio) to isolate peculiar objects; we find at least one absorbed Sey 1 galaxy, 3 Compton thick AGN candidates; and one secure example of a "true" type 2 AGN. Within the sample of 10 still unidentified objects, 3 are almost certainly AGN of type 2; 3 to 4 have spectral slopes typical of AGN; and two are located high on the galactic plane and are strong enough radio emitters so that can be considered good AGN candidates.Comment: 15 pages, 5 figures, ApJ accepte

    Timing accuracy of the Swift X-Ray Telescope in WT mode

    Full text link
    The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on Astronomy&Astrophysic

    Three years field trials to assess the effect of kaolin made particles and copper on olive-fruit fly (B.oleae Gmelin) infestations in Sicily

    Get PDF
    In most countries of Mediterranean Basin, Bactrocera oleae (Gmel), the olive fruit fly, is the key pest insect on olives. In Sicily this pest causes losses of fruits and a poor quality olive oil. Many researchers have recently carried out some field studies which were based on the use of kaolin and copper against the olive-fruit fly. In the last years these products have been effective several times in reducing olive fly infestation. Kaolin had, also, some important effect in reducing heat-stress in fruit crops and olive-trees. The aim of the present study was to assess the effect of kaolin and copper treatment on olive infestations in Sicily and to evaluate chemical and sensory parameters of oils extracted. For this reason, within 2003-2005, the IX Servizio of Assessorato Regionale Agricoltura e Foreste, selected some olive groves where to carry out trials with kaolin and copper and to realize information and divulgation activities

    The deepest X-ray look at the Universe

    Get PDF
    The origin of the X-ray background, in particular at hard (2-10 keV) energies, has been a debated issue for more than 30 years. The Chandra deep fields provide the deepest look at the X-ray sky and are the best dataset to study the X-ray background. We searched the Chandra Deep Field South for X-ray sources with the aid of a dedicated wavelet-based algorithm. We are able to reconstruct the Log N-Log S source distribution in the soft (0.5-2 keV) and hard (2-10 keV) bands down to limiting fluxes of 2x10^{-17} erg s^{-1} cm^{-2} and 2x10^{-16} erg s^{-1} cm^{-2}, respectively. These are a factor ~5 deeper than previous investigations. We find that the soft relation continues along the extrapolation from higher fluxes, almost completely accounting for the soft X-ray background. On the contrary, the hard distribution shows a flattening below ~2x10^{-14} erg s^{-1} cm^{-2}. Nevertheless, we can account for >68% of the hard X-ray background, with the main uncertainty being the sky flux itself.Comment: Accepted for publication on ApJL. Two figures, requires emulateapj5 (included
    corecore