2,405 research outputs found

    Wearable in-ear PPG: detailed respiratory variations enable classification of COPD

    Get PDF
    An ability to extract detailed spirometry-like breath-ing waveforms from wearable sensors promises to greatly improve respiratory health monitoring. Photoplethysmography (PPG) has been researched in depth for estimation of respiration rate, given that it varies with respiration through overall intensity, pulse amplitude and pulse interval. We compare and contrast the extraction of these three respiratory modes from both the ear canal and finger and show a marked improvement in the respiratory power for respiration induced intensity variations and pulse amplitude variations when recording from the ear canal. We next employ a data driven multi-scale method, noise assisted multivariate empirical mode decomposition (NA-MEMD), which allows for simultaneous analysis of all three respiratory modes to extract detailed respiratory waveforms from in-ear PPG. For rigour, we considered in-ear PPG recordings from healthy subjects, both older and young, patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) and healthy subjects with artificially obstructed breathing. Specific in-ear PPG waveform changes are observed for COPD, such as a decreased inspiratory duty cycle and an increased inspiratory magnitude, when compared with expiratory magnitude. These differences are used to classify COPD from healthy and IPF waveforms with a sensitivity of 87% and an overall accuracy of 92%. Our findings indicate the promise of in-ear PPG for COPD screening and unobtrusive respiratory monitoring in ambulatory scenarios and in consumer wearables

    In-Ear EEG From Viscoelastic Generic Earpieces: Robust and Unobtrusive 24/7 Monitoring

    Get PDF
    We introduce a novel in-ear sensor which satisfies key design requirements for wearable electroencephalography (EEG)—it is discreet, unobtrusive, and capable of capturing high-quality brain activity from the ear canal. Unlike our initial designs, which utilize custom earpieces and require a costly and time-consuming manufacturing process, we here introduce the generic earpieces to make ear-EEG suitable for immediate and widespread use. Our approach represents a departure from silicone earmoulds to provide a sensor based on a viscoelastic substrate and conductive cloth electrodes, both of which are shown to possess a number of desirable mechanical and electrical properties. Owing to its viscoelastic nature, such an earpiece exhibits good conformance to the shape of the ear canal, thus providing stable electrode–skin interface, while cloth electrodes require only saline solution to establish low impedance contact. The analysis highlights the distinguishing advantages compared with the current state-of-the-art in ear-EEG. We demonstrate that such a device can be readily used for the measurement of various EEG responses

    Coherence-based approaches for estimating the composition of the seismic wavefield

    Get PDF
    As new techniques exploiting the Earth's ambient seismic noise field are developed and applied, such as for the observation of temporal changes in seismic velocity structure, it is crucial to quantify the precision with which wave‐type measurements can be made. This work uses array data at the Homestake mine in Lead, South Dakota, and an array at Sweetwater, Texas, to consider two aspects that control this precision: the types of seismic wave contributing to the ambient noise field at microseism frequencies and the effect of array geometry. Both are quantified using measurements of wavefield coherence between stations in combination with Wiener filters. We find a strong seasonal change between body‐wave and surface‐wave content. Regarding the inclusion of underground stations, we quantify the lower limit to which the ambient noise field can be characterized and reproduced; the applications of the Wiener filters are about 4 times more successful in reproducing ambient noise waveforms when underground stations are included in the array, resulting in predictions of seismic time series with less than a 1% residual, and are ultimately limited by the geometry and aperture of the array, as well as by temporal variations in the seismic field. We discuss the implications of these results for the geophysics community performing ambient seismic noise studies, as well as for the cancellation of seismic Newtonian gravity noise in ground‐based, sub‐Hertz, gravitational‐wave detectors

    A Widely Linear Complex Unscented Kalman Filter

    Full text link

    Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass

    Full text link
    The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop. III) stars, potentially leading to a new phase of stellar evolution known as a "Dark Star". When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. The influx of DM due to capture may thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero metallicity stars; in this case DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive Pop. III stars are found, they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected grammer, and added citations revised for submission to JCA

    Effects of a nine-month physical activity intervention on morphological characteristics and motor and cognitive skills of preschool children

    Get PDF
    (1) Background: Regular physical activity (PA) plays an important role during early childhood physical and psychological development. This study investigates the effects of a 9-month PA intervention on physiological characteristics and motor and cognitive skills in preschool children. (2) Methods: Preschool children (n = 132; age 4 to 7 years) attending regular preschool programs were nonrandomly assigned to PA intervention (n = 66; 60 min sessions twice per week) or a control group (n = 66; no additional organized PA program) for 9 months. Exercise training for the intervention group included various sports games, outdoor activities, martial arts, yoga, and dance. Anthropometry, motor skills (7 tests), and cognitive skills (Raven’s Colored Progressive Matrices and Cognitive Assessment System) were assessed before and after an intervention period in both groups. Data were analyzed using repeated-measures ANOVA. (3) Results: Body weight significantly increased in both groups over time. Compared to the changes observed in the control group, the intervention group significantly increased in chest circumference (p = 0.022). In contrast, the control group demonstrated an increase in waist circumference (p = 0.001), while these measures in the intervention group remained stable. Participants in the intervention group improved running speed (p = 0.016) and standing broad jump (p = 0.000). The flexibility level was maintained in the intervention group, while a significant decrease was observed in the control group (p = 0.010). Children from the intervention group demonstrated progress in the bent-arm hang test (p = 0.001), unlike the control group subjects. Varied improvements in cognitive skills were observed for different variables in both intervention and control groups, with no robust evidence for PA-intervention-related improvements. (4) Conclusions: Preschool children’s participation in a preschool PA intervention improves their motor skills

    A Delay Vector Variance based marker for an output-only assessment of structural changes in tension leg platforms

    Get PDF
    Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data
    corecore