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Abstract—Convex optimization methods have been extensively
used in the fields of communications and signal processing.
However, the theory of quaternion optimization is currently not
as fully developed and systematic as that of complex and real
optimization. To this end, we establish an essential theory of
convex quaternion optimization for signal processing based on
the generalized Hamilton-real (GHR) calculus. This is achieved
in a way which conforms with traditional complex and real
optimization theory. For rigorous, We present five discriminant
theorems for convex quaternion functions, and four discriminant
criteria for strongly convex quaternion functions. Furthermore,
we provide a fundamental theorem for the optimality of convex
quaternion optimization problems, and demonstrate its utility
through three applications in quaternion signal processing. These
results provide a solid theoretical foundation for convex quater-
nion optimization and open avenues for further developments in
signal processing applications.

Keywords—Convex quaternion functions, strongly convex
quaternion functions, convex quaternion optimization, quater-
nion signal processing.

I. INTRODUCTION

Q
UATERNIONS were first introduced by William Hamil-

ton in 1843 as an associative but non-commutative alge-

bra over the real numbers [1]. Since then, they have become

a powerful tool in many fields, including image processing

[2, 3], signal processing [4–6], and machine learning [7–9].

Examples include the work by Jia et al. [3], who introduced

a robust method for quaternion matrix completion, that can

be used to reconstruct large-scale color images. Flamant et

al. [10] demonstrated the efficiency of Quaternion Fourier

Transform (QFT) in processing bivariate signals. Ogunfunmi

et al. [11] presented a kernel adaptive filter for quaternion

data. Moreover, Mengüç et al. [12] designed quaternion-valued

second-order Volterra adaptive filters for nonlinear 3-D and 4-

D signal processing. Xia et al. [13] established an estimation

framework for processing quaternion-valued Gaussian data.

Finally, Zhang et al. [7] discussed a new method for reducing

the computation cost of quaternion signal estimation. Enshaei-

far et al. [14] introduced quaternion-valued singular spectrum

analysis for multichannel electroencephalogram analysis.
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The theory of real-valued and complex-valued convex opti-

mization is well-established and has seen widely used in the

areas of communications [15], machine learning [16–18] and

signal processing [19–21]. In recent years, convex quaternion

optimization has also attracted interest. For example, Qi et

al. [2] studied first-order derivatives and second-order partial

derivatives of real-valued functions of quaternion variables

over their real and imaginary i, j, k parts. However, this

complicates the proof and computational process in quaternion

optimization. Flamant et al. [22] and Liu et al. [23] provided

first-order characterization of quaternion functions by general-

ized Hamilton-real (GHR) calculus [24]. However, these useful

attempts lack the discussion of gradient monotonicity and

second-order characterization for convex quaternion function,

a pre-requisite for practical applications.

To fill this void, we have systematically address the the-

ory of convex optimization in the quaternion domain. For

rigorous, this is achieved based on the GHR calculus [24], a

generalization of Wirtinger-calculus [25–27] from the complex

domain to the quaternion field. Before the introduction of

the GHR calculus, the quaternion pseudo-derivative was used

for calculating the gradient, which transforms the quaternion

optimization problem into a lengthy and complicated real

optimization problem; the solution is then found by using

real-valued optimization algorithms [28, 29]. Flamant et al.

[5, 22] demostrated that the GHR calculus is a powerful

theory in quaternion signal processing and non-negative matrix

factorization. Mengüç et al. [12, 30] established that the GHR

calculus paves the way for the theory and applications of

quaternion-valued adaptive filters. Took and Xia [31] proposed

a multichannel quaternion least-mean-square based on the

GHR calculus for the adaptive filtering. Parcollet et al. [32]

further emphasized the significance of the GHR calculus as a

recent breakthrough in the field.

The theory of convex optimization in the quaternion field

has gained attention due to its promising applications in signal

processing and optimization. The aim of this work is to

develop the convexity theory of quaternion function using the

GHR calculus [24]. To this end, we make use of the duality of

the augmented quaternion vector qH ,
(

qT, qiT, qjT, qkT
)T

and the augmented real vector qR ,
(

qT
a , q

T

b , q
T
c , q

T

d

)T

[33]. Next, we employ the relationships between augmented

quaternion gradient and augmented real gradient, as well

as between the augmented quaternion Hessian matrix and

augmented real Hessian matrix, as shown in [33]. Based on

these results, we extend the discriminant criteria for convexity

from the real field to the augmented quaternion space, H, and

http://arxiv.org/abs/2305.06879v1
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then to the quaternion field H
n, as illustrated in Figure 1.

Moreover, we define and present four discriminant theorems

for strong convexity, by employing the discriminant criteria of

convex quaternion functions. Finally, we present a fundamental

theorem for the optimality of convex quaternion problems

and provide three illustrative applications in the field of

signal processing, including quaternion linear mean-square

error filter, quaternion projection on affine equality constraint,

and quaternion minimum variance beamforming.

H H
n

R

(23)(25)(20)(26)(27)

Fig. 1. The derivation process of quaternion optimization theory, with the
sets R and H defined by (18), (19).

This work makes three significant contributions to the theory

of convex optimization in the quaternion field:

• By using the GHR calculus, we establish five discrim-

inant theorems for convex functions in the quaternion

field. These theorems include gradient monotonicity and

second-order characterization.

• We provide a clear definition and four discriminant

criteria for strongly convex functions in the quaternion

field; these are consistent with their counterpart real and

complex convexity theorems.

• A fundamental theorem is proposed for the optimality of

convex quaternion problems, together with some practical

applications of convex quaternion optimization in com-

munications and signal processing.

This paper is organized as follows. In Section II, we

give an overview of quaternion algebra, the GHR calculus,

and some equivalence relationships. Section III presents five

discriminant theorems for convex quaternion functions, cover-

ing first-order characterization, second-order characterization

and some examples of convex quaternion functions. Section

IV introduces the definition and discriminant theorems for

strongly convex quaternion functions. In Section V, we propose

a fundamental theorem for convex quaternion optimization

problems and provide three practical applications in signal

processing. Finally, this paper concludes with Section VI.

II. PRELIMINARIES

A. Quaternion Algebra

A quaternion, q, can be expressed as

q = qa + qbi+ qcj + qdk, (1)

where qa, qb, qc, qd ∈ R, and the imaginary units i, j and k

satisfy i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk =
−kj = i, ki = −ik = j. The set of quaternions is defined as

H , {q = qa + qbi+ qcj + qdk | qa, qb, qc, qd ∈ R}. Owing

to the properties of the imaginary units, the multiplication of

two quaternions in H is noncommutative. The real part of q

is denoted by Re {q} = qa, whereas the imaginary part (pure

quaternion) is Im {q} = qbi + qcj + qdk. The conjugate of q

is q∗ = Re {q}− Im {q} = qa− qbi− qcj− qdk. The modulus

of a quaternion is defined as | q |= √
qq∗. Define also qµ, as

it is used in Definition 2.1.

Definition 2.1 (Quaternion rotation [34]): For any quater-

nion, q, and a nonzero quaternion µ, the transformation

qµ , µqµ−1 (2)

describes a rotation of q.

In particular, if µ in (2) is a pure unit quaternion, then the

quaternion rotation in (2) becomes quaternion involution [35],

such as

qi = −iqi = qa + iqb − jqc − kqd, (3)

qj = −jqj = qa − iqb + jqc − kqd, (4)

qk = −kqk = qa − iqb − jqc + kqd. (5)

Property 2.1 (Properties of quaternion rotation [36]): For

any p, q ∈ H, and ∀ν, µ ∈ H, the following holds

(pq)µ = pµqµ, qµν = (qν)
µ
,

qµ∗ , (q∗)
µ
= (qµ)

∗
, q∗µ.

(6)

B. The GHR Calculus

Definition 2.2 (Real-differentiability [37]): A quaternion

function f : H → H, given by f(q) = fa (qa, qb, qc, qd) +
ifb (qa, qb, qc, qd) + jfc (qa, qb, qc, qd) + kfd (qa, qb, qc, qd) is

called real differentiable, if fa, fb, fc, fd are differentiable as

functions of the real variables qa, qb, qc, qd.

Definition 2.3 (GHR derivatives [24]): If f : H → H is real-

differentiable, then the left GHR derivatives of the function f

with respect to qµ and qµ∗ (µ 6= 0, µ ∈ H) are defined as

∂f

∂qµ
=

1

4

(

∂f

∂qa
− ∂f

∂qb
iµ − ∂f

∂qc
jµ − ∂f

∂qd
kµ

)

∈ H, (7)

∂f

∂qµ∗
=

1

4

(

∂f

∂qa
+

∂f

∂qb
iµ +

∂f

∂qc
jµ +

∂f

∂qd
kµ

)

∈ H, (8)

where q = qa + qbi + qcj + qdk, qa, qb, qc, qd ∈ R, and
∂f
∂qa

, ∂f
∂qb

, ∂f
∂qc

, ∂f
∂qd

∈ R are the partial derivatives of f with

respect to qa, qb, qc, qd.

Property 2.2 (Properties of the GHR derivatives [24]): If

f : H → H, g : H → H, then

Product rule:

∂(fg)

∂qµ
= f

∂g

∂qµ
+

∂f

∂qgµ
g,

∂(fg)

∂qµ∗
= f

∂g

∂qµ∗
+

∂f

∂qgµ∗
g (9)

Chain rule:

∂f(g(q))

∂qµ
=

∑

ν∈{1,i,j,k}

∂f

∂gν
∂gν

∂qµ
, (10)

∂f(g(q))

∂qµ∗
=

∑

ν∈{1,i,j,k}

∂f

∂gν∗
∂gν∗

∂qµ∗
(11)

Rotation rule:
(

∂f

∂qµ

)ν

=
∂fν

∂qνµ
,

(

∂f

∂qµ∗

)ν

=
∂fν

∂qνµ∗
(12)

Conjugate rule: If f : H → R,
(

∂f

∂qµ

)∗

=
∂f

∂qµ∗
,

(

∂f

∂qµ∗

)∗

=
∂f

∂qµ
. (13)



3

Definition 2.4 (Quaternion gradient [33]): The quaternion

gradient and its conjugate gradient of a function f : Hn → R

are defined as

∇qf ,

(

∂f

∂q

)T

=

(

∂f

∂q1
, . . . ,

∂f

∂qn

)T

∈ H
n, (14)

∇q∗f ,

(

∂f

∂q∗

)T

=

(

∂f

∂q∗1
, . . . ,

∂f

∂q∗n

)T

∈ H
n, (15)

where
(

∂f
∂q

)T

is the transpose of ∂f
∂q

.

Definition 2.5 (Quaternion Hessian [33]): Let f : Hn → R,

then the two quaternion Hessian matrices are defined as

Hqq ,
∂

∂q

(

∂f

∂q

)T

=















∂2f

∂q1∂q1
· · · ∂2f

∂qn∂q1
...

. . .
...

∂2f

∂q1∂qn
· · · ∂2f

∂qn∂qn















∈ H
n×n, (16)

Hqq∗ ,
∂

∂q

(

∂f

∂q∗

)T

=















∂2f

∂q1∂q
∗
1

· · · ∂2f

∂qn∂q
∗
1

...
. . .

...

∂2f

∂q1∂q∗n
· · · ∂2f

∂qn∂q∗n















∈ H
n×n. (17)

C. The Relationship of Augmented Quaternion and the Aug-

mented Real Vector, Gradient, and Hessian Matrix

Consider a quaternion vector q = qa+qbi+qcj+qdk ∈ H
n

where qa, qb, qc, qd ∈ R
n. Define its augmented real vector

as qR ,
(

qT
a , q

T

b , q
T
c , q

T

d

)T ∈ R [4, 38] and the augmented

quaternion vector as qH ,
(

qT, qiT, qjT, qkT
)T ∈ H [33],

where the set of augmented real vectors and the set of

augmented quaternion vectors are defined as

R ,
{

qR =
(

qT

a , q
T

b , q
T

c , q
T

d

)T | q ∈ H
n
}

= R
4n, (18)

H ,
{

qH =
(

qT, qiT, qjT, qkT
)T | q ∈ H

n
}

⊂ H
4n. (19)

By definition, there exists a one-to-one mapping between H
n,

R and H [22].

Proposition 2.1 ([33]): The relationship between the aug-

mented quaternion vector, qH, and the augmented real vector,

qR, is given by

qH = JnqR ⇔ qR =
1

4
JH

n qH, (20)

where

Jn =









In iIn jIn kIn
In iIn −jIn −kIn
In −iIn jIn −kIn
In −iIn −jIn kIn









∈ H
4n×4n, (21)

and JH

n Jn = 4I4n, while In is the n×n identity matrix, with

JH

n as the conjugate transpose of Jn.

From (20), the quaternion function f (q) : Hn → R can be

viewed in three equivalent forms [33], as follows

f (q) ⇔ f (qR) , f (qa, qb, qc, qd)

⇔ f (qH) , f
(

q, qi, qj , qk
)

.
(22)

Note that these three functions are equivalent but have different

forms, denoted as f for simplicity. Here, the variables of the

functions f (q), f (qR), and f (qH) are quaternion vectors,

augmented real vectors, and augmented quaternion vectors,

respectively. They are referred to as quaternion function,

augmented real function, and augmented quaternion function,

respectively. For f (qR) : R → R, its augmented real gradient

is defined as ∇Rf ,
(

∂f
∂qR

)T

and the augmented real Hessian

matrix as HRR , ∂
∂qR

(

∂f
∂qR

)T

. For f (qH) : H → R, the

augmented quaternion gradient and its conjugate gradient are

defined as [39]

∇Hf ,

(

∂f

∂qH

)T

=









∇qf

∇qif

∇qjf

∇qkf









, (23)

∇H∗f ,

(

∂f

∂q∗
H

)T

=









∇q∗f

∇qi∗f

∇qj∗f

∇qk∗f









, (24)

and the augmented quaternion Hessian matrix is defined as

HHH∗ ,
∂

∂qH

(

∂f

∂q∗
H

)T

(25)

=









Hqq∗ Hqiq∗ Hqjq∗ Hqkq∗

Hqqi∗ Hqiqi∗ Hqjqi∗ Hqkqi∗

Hqqj∗ Hqiqj∗ Hqjqj∗ Hqkqj∗

Hqqk∗ Hqiqk∗ Hqjqk∗ Hqkqk∗









.

Proposition 2.2 ([39]): The relationship between the aug-

mented quaternion gradient, ∇H∗f , and the augmented real

gradient, ∇Rf , is given by

∇H∗f =
1

4
Jn∇Rf ⇔ ∇Rf = Jn

H∇H∗f. (26)

Proposition 2.3 ([33]): The relationship between the aug-

mented quaternion Hessian matrix, HHH∗ , and the augmented

real Hessian matrix, HRR, is given by

HHH∗ =
1

16
JnHRRJH

n ⇔ HRR = JH

nHHH∗Jn (27)

where HHH∗ , ∂
∂qH

(

∂f
∂q∗

H

)T

, HRR , ∂
∂qR

(

∂f
∂qR

)T

.

Corollary 2.1: The augmented quaternion Hessian matrix,

HHH∗ , is a Hermite matrix, that is

HH

HH∗ = HHH∗ , (28)

where HH

HH∗ is the conjugate transpose of HHH∗ .

Proof: This is straightforward to demonstrate by using

(27) and the fact that HRR is a Hermitian matrix.
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Proposition 2.4: For any p, q ∈ H
n, their augmented real

vectors are pR, qR ∈ R, and their augmented quaternion

vectors are pH, qH ∈ H. Then

(a) pT

HqH = 4Re
{

pTq
}

; (29)

(b) 4pT

RqR = pH

HqH = 4Re
{

pHq
}

; (30)

(c) 2‖pR‖2 = ‖pH‖2 = 2‖p‖2; (31)

(d) ‖p+ q‖22 = ‖p‖22 + 2Re
{

pHq
}

+ ‖q‖22. (32)

Proof: By the relationship of q, qR, and qH, we have

(a) pT

HqH =
∑

µ∈{1,i,j,k}

pµTqµ (6)
=

∑

µ∈{1,i,j,k}

(

pTq
)µ

(20)
= 4Re

{

pTq
}

;

(33)

(b) 4pT

RqR = 4pH

RqR
(20)
= pH

HJn

1

4
JH

n qH = pH

HqH

(29)
= 4Re

{

pHq
}

;

(34)

(c) 4‖pR‖22 = 4pT

RpR
(30)
= pH

HpH = ‖pH‖22
(30)
= 4Re

{

pHp
}

= 4pHp = 4‖p‖22;
(35)

(d) ‖p+ q‖22 =(p+ q)H (p+ q)

=pHp+ pHq + qHp+ qHq

=‖p‖22 + 2Re
{

pHq
}

+ ‖q‖22.
(36)

This completes the proof.

Proposition 2.5: If the quaternion function f (q) : Hn → R

is real-differentiable, then ∀p, q ∈ H
n we have

(a) ∇Rf (pR)
T
qR =∇H∗f (pH)

H
qH

=4Re
{

∇p∗f (p)H q
}

;
(37)

(b) ∇Rf (pR)T ∇Rf (qR) = 4∇H∗f (pH)H∇H∗f (qH)

=16Re
{

∇p∗f (p)
H ∇q∗f (q)

}

;

(38)

(c) ‖∇Rf (pR)‖2 = 2‖∇Hf (pH)‖2 = 4‖∇pf (p)‖2. (39)

Proof: By the relationship of q, qR, and qH, and the

relationship of ∇q∗f , ∇Rf , and ∇H∗f , we have

(a) ∇Rf (pR)
T
qR = ∇Rf (pR)

H
qR

(20)(26)
= ∇H∗f (pH)H Jn

1

4
JH

n qH

= ∇H∗f (pH)
H
qH

=
∑

µ∈{1,i,j,k}

∇p∗f (p)
µH

qµ

(6)
=

∑

µ∈{1,i,j,k}

(

∇p∗f (p)
H
q
)µ

(20)
= 4Re

{

∇p∗f (p)
H
q
}

;

(40)

(b) ∇Rf (pR)T∇Rf (qR) = ∇Rf (pR)H∇Rf (qR)
(26)
= ∇H∗f (pH)

H
JnJ

H

n∇H∗f (qH)

= 4∇H∗f (pH)
H∇H∗f (qH)

= 4
∑

µ∈{1,i,j,k}

∇p∗f (p)
µH ∇q∗f (q)

µ

(6)
= 4

∑

µ∈{1,i,j,k}

(

∇p∗f (p)
H ∇q∗f (q)

)µ

(20)
= 16Re

{

∇p∗f (p)
H∇q∗f (q)

}

;

(41)

(c) Let q = p in (38).

This completes the proof.

III. DISCRIMINANT THEOREMS FOR CONVEX

QUATERNION FUNCTIONS

The objective of this section is to introduce five discriminant

criteria for convex quaternion functions, including the first-

order characterization and the second-order characterization.

An example is presented to illustrate how these criteria can be

applied in practice.

A. Convex Set and Convex Quaternion Function

We begin by introducing the fundamental concepts, such as

convex set and convex function [40, 41].

Definition 3.1 (Convex set): The set C is called convex, if

∀x,y ∈ C, ∀0 6 θ 6 1, θx + (1− θ) y ∈ C. The set C can

be a subset of Hn, R or H.

Definition 3.2 (Convex function): A function f is said to be

convex, if domf is convex, and ∀x,y ∈ domf , 0 6 θ 6 1,

f
(

θx+ (1− θ) y
)

6 θf (x) + (1− θ) f (y) . (42)

The range of the function f is R, and the definition field

domf can be a subset of Hn, R or H.

Example 3.1: Consider a quaternion matrix, A ∈ H
m×n,

and a quaternion vector, b ∈ H
m, then the set D ,

{q ∈ H
n | Aq = b} is convex.

Proof: ∀p, q ∈ D, Ap = b, Aq = b, ∀0 6 θ 6 1,

A (θp+ (1− θ)q) = θAp+(1−θ)Aq = θb+(1−θ)b = b.

(43)

Therefore, θp+ (1− θ)q ∈ D, that is the set D is convex.

Example 3.2: If the quaternion function f(q) is convex, then

the set E , {q ∈ H
n | f(q) 6 0} is also convex.

Proof: ∀p, q ∈ E , f(p) 6 0, f(q) 6 0. Since f(q) is

convex, ∀0 6 θ 6 1,

f
(

θp+ (1 − θ)q
)

6 θf(p) + (1− θ)f(q) 6 0. (44)

Therefore, θp+ (1− θ)q ∈ E , that is the set E is convex.

B. First-order Characterization of Discriminant Theorems for

Convex Quaternion Functions

We shall now introduce four discriminant theorems for

convex quaternion functions, including the first-order charac-

terization and gradient monotonicity.

Theorem 3.1: Consider the three sets C ⊂ H
n,

CR ,
{

qR =
(

qT

a , q
T

b , q
T

c , q
T

d

)T | q ∈ C
}

⊂ R = R
4n,
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CH ,
{

qH =
(

qT, qiT, qjT, qkT
)T | q ∈ C

}

⊂ H ⊂ H
4n.

Then, C is convex ⇔ CR is convex ⇔ CH is convex.

Proof: Using the definition of C, CR, CH, and that of

convex set, the proof following.

A straightforward method to discriminate the convexity of

a quaternion function is to confine it to a line segment and

determine whether the resulting one-dimensional function is

convex, as in the following theorem.

Theorem 3.2: The quaternion function f(q) : C ⊂ H
n → R

is convex if and only if (shortened to iff) ∀q ∈ C, v ∈ H
n,

g : S → R,

g(t) = f(q + tv) (45)

is convex, where S , {t ∈ R | q + tv ∈ C} ⊂ R.

Proof: The proof follows the same steps as its counterpart

in the real field [40, 41].

For real-differentiable quaternion functions, we can also use

their gradient information to discriminate their convexity, as

stated in the following theorem.

Theorem 3.3 (First-order characterization [22]): Consider

a convex set C ⊂ H
n and a real-differentiable quaternion

function f(q) : C → R. Then f(q) is convex iff ∀p, q ∈ C,

f (q) > f (p) + 4Re
{

∇p∗f (p)
H
(q − p)

}

, (46)

where ∇p∗f (p) is defined in (15).
Another commonly used first-order characterization is gra-

dient monotonicity, as shown below.

Theorem 3.4 (Gradient monotonicity): Consider a convex set

C ⊂ H
n and a real-differentiable quaternion function f(q) :

C → R. Then, f(q) is convex iff ∀p, q ∈ C,

Re
{

(

∇p∗f (p)−∇q∗f (q)
)H

(p− q)
}

> 0, (47)

where ∇p∗f (p) is defined in (15).
Proof: From Theorem 3.1, C is convex iff CR is con-

vex. We already know [40, 41] that for a differentiable real

function, f(qR) is convex iff ∀pR, qR ∈ CR,

(

∇Rf (pR)−∇Rf (qR)
)T

(pR − qR) > 0, (48)

where the set CR ⊂ R is convex. Hence from (37), we have

(

∇Rf (pR)−∇Rf (qR)
)T

(pR − qR)

=4Re
{

(

∇p∗f (p)−∇q∗f (q)
)H

(p− q)
}

.
(49)

Upon substituting (49) into (48), the proof follows.

In addition, we can also use the epigraph to discriminate

the convexity of f (q), as shown below.

Definition 3.3 (Epigraph): For the quaternion generalized

real-valued function f (q) : Hn → R ∪ {±∞}, the set

epif =
{

(q, t) ∈ H
n+1 | f(q) 6 t, t ∈ R

}

(50)

is called the epigraph of f(q).
Theorem 3.5: The quaternion generalized real-valued func-

tion f (q) : C ⊂ H
n → R ∪ {±∞} is convex, iff epif is a

convex set.

Proof: The proof follows the same steps as its counterpart

in the real field [40, 41].

C. Second-order Characterization of Discriminant Theorems

for Convex Quaternion Functions

Before introducing the second-order characterization of

convex quaternion functions, we first need to define positive

definite quaternion matrices.

Definition 3.4 (Positive definite matrix): The matrix A ∈
H

n×n is called positive definite, if

Re
{

xHAx
}

> 0, ∀x ∈ H
n, x 6= 0, (51)

and is denoted by A ≻ O, where O is the n × n zero

matrix. Similarly, the matrix A ∈ H
n×n is called positive

semi-definite, if

Re
{

xHAx
}

> 0, ∀x ∈ H
n, x 6= 0, (52)

and is denoted by A � O.

Theorem 3.6: If the matrix A ∈ H
n×n satisfies AH = A,

then A is positive definite iff

xHAx > 0, ∀x ∈ H
n, x 6= 0. (53)

Similarly, the matrix A is positive semi-definite iff

xHAx > 0, ∀x ∈ H
n, x 6= 0. (54)

Proof: This is straightforward to prove, by applying

Definition 3.4.

If the quaternion function f(q) is second-order continuous

real-differentiable, we can use the Hessian matrix to discrim-

inate its convexity, as shown below.

Theorem 3.7 (Second-order characterization): Consider a

convex set C ⊂ H
n and a second-order continuous real-

differentiable quaternion function f(q) : C → R. Then f(q)
is convex iff

HHH∗ � O. (55)

where HHH∗ is defined in (25).
Proof: Applying Theorem 3.1, the set C is convex iff the

set CR is convex. We already know [40, 41] that for a second-

order continous differentiable function, f(qR) is convex iff

HRR � O, ∀qR ∈ CR, (56)

where the set CR ⊂ R is convex. By Corollary 2.1, HHH∗ is

a Hermite matrix. Then ∀xH ∈ H, xH 6= 0, we have

xH

HHHH∗xH
(27)
=

1

16
xH

HJnHRRJH

nxH

=
1

16

(

JH

nxH

)H

HRR

(

JH

nxH

)

(20)
= xH

RHRRxR.

(57)

Therefore,

HHH∗ � O ⇔ HRR � O, (58)

which concludes the proof.

Corollary 3.1: Consider a convex set C ⊂ H
n and a second-

order continuous real-differentiable quaternion function f(q) :
C → R. Then, the following three propositions are equivalent:

(a) f(q) is convex;

(b) HHH∗ � O;
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(c)
∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

> 0, ∀x ∈ H
n, x 6= 0.

Proof: From Theorem 3.7, (a) is equivalent to (b), so we

only need to prove that (b) is equivalent to (c). From Corollary

2.1, we know that HHH∗ is a Hermite matrix. Then ∀xH ∈ H,

xH 6= 0, we have

xH

HHHH∗xH

=









x

xi

xj

xk









H







Hqq∗ Hqiq∗ Hqjq∗ Hqkq∗

Hqqi∗ Hqiqi∗ Hqjqi∗ Hqkqi∗

Hqqj∗ Hqiqj∗ Hqjqj∗ Hqkqj∗

Hqqk∗ Hqiqk∗ Hqjqk∗ Hqkqk∗

















x

xi

xj

xk









=
∑

µ,ν∈{1,i,j,k}

xµHHqνqµ∗xν

(20)
= 4

∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

. (59)

Therefore,

∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

> 0, ∀x ∈ H
n, x 6= 0

⇔ HHH∗ � O.

(60)

This completes the proof.

Lemma 3.1: The matrix A ∈ H
n×n is positive definite

(positive semi-definite), iff all principal submatrices of A are

positive definite (positive semi-definite).

Proof: The follows the same steps as its counterpart in

the real field [42].

Applying Lemma 3.1, we can obtain a necessary condition

for convex quaternion functions.

Theorem 3.8: Consider a convex set C ⊂ H
n and a second-

order continuous real-differentiable quaternion function f(q) :
C → R. If f(q) is convex, then

Hqq∗ � O, (61)

where Hqq∗ is the quaternion Hessian matrix, defined in (17).

Proof: Upon applying Theorem 3.7, together with the

convexity of f(q), we have HHH∗ � O. By (25) and Lemma

3.1, we finally obtain Hqq∗ � O.

D. Examples of Convex Quaternion Function

We next provide a basic example to determine the convexity

of quaternion functions. In this example, we make use of

certain GHR derivatives presented in TABLE IV of [36], which

are included in TABLE I here.

Example 3.3: If the quaternion function f (q) =
‖Aq − b‖22, ∀q ∈ H

n, A ∈ H
m×n, b ∈ H

m, then f (q)
is convex.

Proof: (First-order characterization criterion) By the

definition of the 2-norm, we have

f (q) =‖Aq − b‖22
=(Aq − b)H (Aq − b)

=qHAHAq − qHAHb− bHAq + bHb.

(62)

TABLE I
SEVERAL DERIVATIVES PERFORMED BY THE GHR CALCULUS FROM

TABLE IV OF [36], ∀A ∈ H
n×n , ∀a ∈ H

n , ∀b ∈ H
n , α ∈ H, β ∈ H.

f(q) or f(q) ∂f
∂q

or
∂f
∂q

∂f
∂q∗ or

∂f
∂q∗

aTqβ aTRe{β} − 1

2
aTβ∗

αqHb − 1

2
αbH αRe

{

bT
}

Aqβ ARe {β} − 1

2
Aβ∗

qHAq qHA− 1

2
(Aq)H − 1

2
qHA+ Re

{

(Aq)T
}

Upon using the first, the second and the fourth rows of TABLE

I , we take the gradient of f (q) with respect to q∗ to gield

∇q∗f (q) ,

(

∂f

∂q∗

)T
(13)
=

(

∂f

∂q

)H

=
1

2
AHAq +

1

2
AHb−AHb

=
1

2
AH (Aq − b) .

(63)

Then ∀p, q ∈ H
n, we obtain

f (q)− f (p)− 4Re
{

∇p∗f (p)H (q − p)
}

=(Aq − b)
H
(Aq − b)− (Ap− b)

H
(Ap− b)

−2Re
{

(

AH (Ap− b)
)H

(q − p)
}

=qHAHAq + pHAHAp− pHAHAq − qHAHAp

=(q − p)
H
AHA (q − p)

=‖A (q − p)‖22
>0.

(64)

Therefore, from Theorem 3.3 we know that f (q) is convex.

(Gradient monotonicity criterion) ∀p, q ∈ H
n, we have

Re
{

(∇p∗f (p)−∇q∗f (q))H (p− q)
}

=
1

2
Re

{

(

AH (Ap− b)−AH (Aq − b)
)H

(p− q)
}

=
1

2
Re

{

(p− q)HAHA (p− q)
}

=
1

2
(p− q)

H
AHA (p− q)

=
1

2
‖A (q − p)‖22

>0.

(65)

Therefore, from Theorem 3.4 we know that f (q) is convex.
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(Second-order characterization criterion) Using the third

row of TABLE I , we get

Hqq∗ ,
∂

∂q

(

∂f

∂q∗

)T

=
∂∇q∗f (q)

∂q

(63)
=

∂

(

1

2
AH (Aq − b)

)

∂q
=

1

2
AHA,

(66)

and for any ν ∈ {i, j, k},

Hqνq∗ ,
∂

∂qν

(

∂f

∂q∗

)T

=
∂∇q∗f (q)

∂qν

(63)
=

∂

(

1

2
AH (Aq − b)

)

∂qν

(9)
=

1

2
AHA

∂q

∂qν
= O.

(67)

Then ∀x ∈ H
n,x 6= 0, it follows that

∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

=
1

2
Re

{

xHAHAx
}

=
1

2
xHAHAx =

1

2
‖Ax‖22 > 0.

(68)

Therefore, by Corollary 3.1, we know that f (q) is convex.

IV. STRONGLY CONVEX QUATERNION FUNCTION:

DEFINITION AND DISCRIMINANT THEOREMS

We shall now discuss the discriminant criteria for strongly

convex quaternion functions, building upon the theorems for

convexity. These criteria will be useful in designing optimiza-

tion algorithms.

Definition 4.1 (Strongly convex function): The quaternion

function f (q) : C ⊂ H
n → R is called strongly convex, if

∃σ > 0, ∀p, q ∈ C, ∀θ ∈ (0, 1),

f
(

θp+(1−θ)q
)

6 θf(p)+(1−θ)f(q)− σ

2
θ(1−θ)‖p−q‖22,

(69)

where σ is the strongly convex parameter. For convenience,

f (q) is also called σ-strongly convex.

Based on the definition of strongly convex functions, we

obtain the following equivalence theorem.

Theorem 4.1: The quaternion function f (q) : C ⊂ H
n → R

is σ-strongly convex, iff ∃σ > 0, s.t. the function

g (q) , f (q)− σ

2
‖q‖22 (70)

is convex.

Proof: This is straightforward to prove, by applying

Definition 3.2 and Definition 4.1.

Similar to convex quaternion functions, strongly convex

quaternion functions also have first-order characterization,

gradient monotonicity, and second-order characterization.

Theorem 4.2 (First-order characterization): Consider a con-

vex set C ⊂ H
n and a real-differentiable quaternion function

f(q) : C → R. Then, f(q) is σ-strongly convex iff ∀p, q ∈ C,

f (q) > f (p) + 4Re
{

∇p∗f (p)H (q − p)
}

+
σ

2
‖q − p‖22,

(71)

where ∇p∗f (p) is defined in (15).

Proof: From Theorem 4.1, f(p) is strongly convex iff

g (p) = f (p) − 1

2
σ‖p‖22 is convex. Then, upon applying

Theorem 3.3, ∀p, q ∈ C,

g (q) > g (p) + 4Re
{

∇p∗g (p)
H
(q − p)

}

. (72)

Using the fourth row of TABLE I , ∇p∗g (p) = ∇p∗f (p) −
1

4
σp. Then, ∀p, q ∈ C,

f (q)− σ

2
‖q‖22 (73)

>f (p)− σ

2
‖p‖22 + 4Re

{

(

∇p∗f (p)− σ

4
p
)H

(q − p)
}

.

Since

σ

2
‖q‖22 −

σ

2
‖p‖22 + 4Re

{

(

∇p∗f (p)− σ

4
p
)H

(q − p)
}

=4Re
{

∇p∗f (p)
H
(q − p)

}

− σRe
{

pHq
}

+ σ‖p‖22
+
σ

2
‖q‖22 −

σ

2
‖p‖22

(32)
= 4Re

{

∇p∗f (p)
H
(q − p)

}

+
σ

2
‖q − p‖22. (74)

Upon substituting (74) into (73), the proof follows.

Theorem 4.3 (Gradient monotonicity): Consider a convex set

C ⊂ H
n and a real-differentiable quaternion function f(q) :

C → R. Then, f(q) is σ-strongly convex iff ∀p, q ∈ C,

Re
{

(

∇p∗f (p)−∇q∗f (q)
)H

(p− q)
}

>
σ

4
‖p− q‖22,

(75)

where ∇p∗f (p) is defined in (15).
Proof: From the Theorem 4.1, f(q) is strongly convex

iff g (q) = f (q) − 1

2
σ‖q‖22 is convex. Then, after applying

Theorem 3.4, we have

Re
{

(∇p∗g (p)−∇q∗g (q))
H
(p− q)

}

> 0, ∀p, q ∈ C.
(76)

Using the fourth row of TABLE I , we have ∇q∗g (q) =
∇q∗f (q)− 1

4
σq, then ∀p, q ∈ C,

Re
{

(

∇p∗f (p)− σ

4
p−∇q∗f (q) +

σ

4
q
)H

(p− q)
}

> 0.

(77)

Upon rearranging the terms in (77), we obtain (75).
Theorem 4.4 (Second-order characterization): Consider a

convex set C ⊂ H
n and a second-order continuous real-

differentiable quaternion function f(q) : C → R. Then, f(q)
is σ-strongly convex, iff

HHH∗ � σ

4
I4n, (78)

where HHH∗ is defined in (25).
Proof: Define g (q) , f (q)− 1

2
σ‖q‖22, h(q) , 2‖q‖22 =

2qHq = 2
(

qHq
)µ (6)

= 2qµHqµ, µ ∈ {1, i, j, k}. Upon applying

the fourth row of TABLE I , we have
(

∂h

∂qµ∗

)T

= qµ, µ ∈ {1, i, j, k} . (79)

Then, ∀µ ∈ {1, i, j, k},

∂

∂qµ

(

∂h

∂qµ∗

)T
(79)
=

∂qµ

∂qµ
= In, (80)
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and ∀µ, ν ∈ {1, i, j, k}, µ 6= ν,

∂

∂qν

(

∂h

∂qµ∗

)T
(79)
=

∂qµ

∂qν
= O. (81)

By (25), the augmented quaternion Hessian matrix of h is

I4n. Therefore, the augmented quaternion Hessian matrix of

g is HHH∗ − 1

4
σI4n. From Theorem 4.1, f(q) is strongly

convex iff g (q) is convex. Then upon applying Theorem 3.7,

g (q) = f (q) − 1

2
σ‖q‖22 is convex iff HHH∗ − 1

4
σI4n � O.

Corollary 4.1: Consider a convex set C ⊂ H
n and a second-

order continuous real-differentiable quaternion function f(q) :
C → R. Then, the following three propositions are equivalent:

(a) f(q) is σ-strongly convex;

(b) HHH∗ � 1

4
σI4n;

(c)
∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

− 1

4
σ‖x‖22 > 0, ∀x ∈

H
n, x 6= 0.

Proof: According to Theorem 4.4, (a) is equivalent to

(b), so we only need to prove that (b) is equivalent to (c). By

Corollary 2.1, HHH∗ is a Hermite matrix, so HHH∗− 1

4
σI4n

is also Hermite matrix. Then, ∀xH ∈ H, xH 6= 0, we have

xH

H

(

HHH∗ − σ

4
I4n

)

xH

= xH

HHHH∗xH − σ

4
xH

HxH

(31)
=

∑

µ,ν∈{1,i,j,k}

xµHHqνqµ∗xν − σxHx

(20)
= 4

∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

− σ‖x‖22.

(82)

Therefore, ∀x ∈ H
n, x 6= 0,

∑

ν∈{1,i,j,k}

Re
{

xHHqνq∗xν
}

− σ

4
‖x‖22 > 0,

⇔ HHH∗ − σ

4
I4n � O.

(83)

This completes the proof.

Upon applying Lemma 3.1, we can obtain a necessary

condition for σ-strongly convex quaternion functions.

Theorem 4.5: Consider a convex set C ⊂ H
n and a second-

order continuous real-differentiable quaternion function f(q) :
C → R. If f(q) is σ-strongly convex, then

Hqq∗ � σ

4
In, (84)

where Hqq∗ is the quaternion Hessian matrix, defined in (17).
Proof: Note that f(q) is σ-strongly convex, and upon

applying Theorem 4.4, we have HHH∗ � 1

4
σI4n. By (25)

and Lemma 3.1, we finally obtain Hqq∗ � 1

4
σIn.

V. CONVEX QUATERNION OPTIMIZATION PROBLEMS AND

THEIR APPLICATIONS IN SIGNAL PROCESSING

We now proceed to introduce the convex quaternion prob-

lem and its fundamental theorem. This is followed by several

applications of convex quaternion optimization in communi-

cations, highlighting its practical significance.

A. Convex Quaternion Optimization Problems

Similar to convex real and complex optimization problems,

convex quaternion optimization problems generally have a

structure which consist of the minimization of a convex

quaternion function subject to (shortened to s.t.) quaternion

affine equality constraints and inequality constraints defined

by convex quaternion functions, as follows

min
q∈Hn

f0(q)

s.t. Aq = b,

fi(q) 6 0, i = 1, . . . , P

(85)

where fi : H
n → R, i = 0, 1, . . . , P is convex, A ∈ H

m×n,

b ∈ H
m. The problem field is F ,

⋂P
i=0

domfi, and feasi-

ble set is C , {q ∈ F | fi(q) 6 0, i = 1, . . . , P, Aq = b}.

From Definition 3.2, Example 3.1 and Example 3.2, the

sets D , {q ∈ H
n | Aq = b}, Ei , {q ∈ H

n | fi(q) 6 0},

i = 1, . . . , P and domfi, i = 0, 1, . . . , P are convex.

Therefore, the set C = D⋂

(

⋂P
i=1

Ei
)

⋂F is also convex.

When studying the convexity of quaternion functions, we

utilized the augmented quaternion vectors and augmented real

vectors. Similarly, when studying the properties of quaternion

convex optimization problems, we also need to utilize the

augmented quaternion and the augmented real convex opti-

mization settings.

The convex augmented quaternion optimization problem of

(85) is given by [22]

min
qH∈H

f0(qH)

s.t. AHqH = bH,

fi(qH) 6 0, i = 1, . . . , P

(86)

where fi : H → R, i = 0, 1, . . . , P is convex, AH ,
diag

(

A, Ai, Aj , Ak
)

∈ H
4m×4n, A ∈ H

m×n, and bH ,
(

bT, biT, bjT, bkT
)T ∈ H

4m.

The convex augmented real convex optimization problem of

(85) is given by [22]

min
qR∈R

f0(qR)

s.t. ARqR = bR,

fi(qR) 6 0, i = 1, . . . , P

(87)

where fi : R → R, i = 0, 1, . . . , P is convex, together

with AR , 1

4
JH

mAHJn ∈ R
4m×4n, AH ∈ H

4m×4n, and

bR , 1

4
JH

mbH ∈ R
4m.

Lemma 5.1 ([22]): The convex quaternion optimization

problem in (85), the convex augmented quaternion opti-

mization problem in (86), and the convex augmented real

optimization problem in (87) are equivalent.

Theorem 5.1: For the convex quaternion optimization prob-

lem in (85), any local optimal solution is also the global

optimal solution.

Proof: We already know [43] that for the real con-

vex optimization problem in (87), any local optimal solu-

tion, for example q̄R, is also the global optimal solution.

Then, from Lemma 5.1, the local optimal solution q̄H ,
(

q̄T, q̄iT, q̄jT, q̄kT
)T

= Jnq̄R is also global, in the augmented
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convex quaternion optimization problem in (86). Therefore,

the local optimal solution, q̄, is also global, in the convex

quaternion optimization problem in (85).

B. Applications of Convex Quaternion Optimization in Signal

Processing

Application 5.1 (Quaternion linear mean-square error fil-

ter): The quaternion minimum mean-square error (MSE) filter

can be specified as

min
w∈Hn

J (w) , E
{

|e(n)|2
}

= E
{

|d(n)− y(n)|2
}

, (88)

where y(n) = wHx(n), x(n) ∈ H
n is the input vector, w ∈

H
n is the filter weight vector, and d(n) ∈ H is the desired

sequence. By the definition of the modulus, we have

J (w) =E
{

|d(n)−wHx(n)|2
}

=E
{

(

d(n)−wHx(n)
) (

d(n)−wHx(n)
)∗
}

=wHE{x(n)xH(n)}w − E{d(n)xH(n)}w
−wHE{x(n)d∗(n)}+ E{d(n)d∗(n)}
=wHRw − pHw −wHp+ σ2

d,

(89)

where R = E{x(n)xH(n)} denotes the quaternion-valued

input correlation matrix, p = E{x(n)d∗(n)} is the crosscorre-

lation vector between the desired response and the input signal,

σ2
d = E{d(n)d∗(n)} is the power of the desired response. By

(62) in Example 3.3, we know that J (w) is convex. Similarly

to (63), we take the gradient of J (w) with respect to w∗,

and set the result to 0 to obtain

∇w∗J (w) =

(

∂J
∂w

)H

=
1

2
Rw − 1

2
p = 0. (90)

Using (90) and Theorem 5.1, we arrive at gives the closed-

form optimal solution

w̄ = R−1p. (91)

Application 5.2 (Quaternion projection on affine equality

constraint): The quaternion projection problem can be de-

scribed as
min
x∈Hn

‖x− y‖22
s.t. Ax = b

(92)

where y ∈ H
n, b ∈ H

p, A ∈ H
p×n and rank(A) = p < n.

Applying Example 3.3, f(x) = ‖x−y‖22 is convex, and Ax =
b is an affine equality constraint. Therefore, the quaternion

optimization problem in (92) is convex.

Using the methed of Lagrange multipliers [22, 36], we have

L(x, λ)
=‖x− y‖22 +Re

{

λ
H(Ax− b)

}

=(x− y)H(x− y) +
1

2
λH(Ax− b) +

1

2
(Ax− b)Hλ

=xHx+

(

1

2
λHA− yH

)

x+ xH

(

1

2
AHλ− y

)

+yHy − 1

2
λHb− 1

2
bHλ,

(93)

where λ ∈ H
p denotes the set of Lagrange multipliers. Finding

the gradient of L (x,λ) with respect to x∗ in the same way

as in (63) and setting the result to 0, we have

∇x∗L(x,λ) =
(

∂L
∂x

)H

=
1

2
x+

(

1

2
λHA− yH

)H

− 1

2

(

1

2
AHλ− y

)

=
1

2
x− 1

2
y +

1

4
AHλ (94)

=0,

which leads to

x = y − 1

2
AHλ. (95)

A combinition of (95) with the constraint Ax = b yields

A

(

y − 1

2
AHλ

)

= b

⇒ λ = 2
(

AAH
)−1

(Ay − b).

(96)

Substituting (96) into (95) and applying Theorem 5.1, we

obtain the following optimal solution

x̄ = y +AH
(

AAH
)−1

(b−Ay). (97)

Application 5.3 (Quaternion minimum variance beamform-

ing): The problem of quaternion variance beamforming mini-

mization can be described as

min
w∈Hn

f(w) , wHRw

s.t. wHa = 1,
(98)

where w ∈ H
n is the beamformer weight vector, a ∈ H

n is

the steering vector, and RH = R ∈ H
n×n is positive definite.

We will next prove that the problem in (98) is a convex

quaternion optimization problem. Using the fourth row of

TABLE I , we have

∇w∗f (w) =

(

∂f

∂w

)H

=

(

wHR− 1

2
(Rw)

H

)H

=
1

2
Rw.

(99)

Then, ∀v,w ∈ H
n,

Re
{

(

∇v∗f (v)−∇w∗f (w)
)H

(v −w)
}

=
1

2
Re

{

(Rv −Rw)
H
(v −w)

}

=
1

2
(v −w)HR (v −w)

>0.

(100)

From Theorem 3.4, it follows that f (w) is convex, and

wHa = 1 is an affine equality constraint. Therefore, the

problem in (98) is a convex quaternion optimization problem.

The Lagrangian of problem in (98) is given by [22, 36]

L (w, λ) = wHRw + λ
(

wHa− 1
)

, λ ∈ R, (101)
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which is a real-valued function of w ∈ H
n. Using the second

and the fourth rows of TABLE I , and setting ∇w∗L (w, λ) =
0, we have

∇w∗L (w, λ) =

(

∂L
∂w

)H

=
1

2
Rw − 1

2
λa = 0

⇒ w = λR−1a.

(102)

Upon substituting (102) into aHw = 1, we obtain

λaHR−1a = 1 ⇒ λ =
1

aHR−1a
. (103)

Therefore, upon applying Theorem 5.1, the closed-form opti-

mal solution is obtained as

w̄ =
R−1a

aHR−1a
. (104)

VI. CONCLUSIONS

We have established the theory of convex quaternion op-

timization based on the GHR calculus, which is an enabling

methodology in the field of quaternion optimization and its

applications in quaternion signal processing and machine

learning. Our study has resulted in the development of five

discriminant theorems for convex functions in the quaternion

field, utilizing (20), (23), (25), (26), and (27). Furthermore,

we have provided the definition and four discriminant criteria

for strongly convex functions by employing the results for

convex quaternion functions. In addition, we have presented

a fundamental theorem for the optimality of convex quater-

nion optimization problems and three applications in signal

processing, which have both enriched the theory of convex

quaternion optimization and provided a theoretical foundation

for quaternion signal processing. However, the convexity of

non-differentiable quaternion functions by the GHR calculus

still remains an open area, and this work provides a foundation

and an avenue for further research in this direction.
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