2,870 research outputs found
Anisotropic flow in the forward directions at sqrt(s_NN) = 200 GeV
The addition of the two Forward TPCs to the STAR detector allows one to
measure anisotropic flow at forward pseudorapidities. This made possible the
first measurement of directed flow at collision energies of sqrt(s_NN) = 200
GeV. PHOBOS' results on elliptic flow at forward rapidities were confirmed, and
the sign of v2 was determined to be positive for the first time at RHIC
energies. The higher harmonic, v4, is consistent with the recently suggested
v2^2 scaling behavior.Comment: 4 pages, 5 figures; write-up of a poster (see
http://cern.ch/Oldenburg/Talks/QM2004_Flow_Poster.pdf) presented at Quark
Matter 2004, Oakland; reference 10 correcte
Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces
We investigate the possibility that brine could be displaced upward into potable water through wells. Because of the large volumes of CO2 to be injected, the influence of the zone of elevated pressure on potential conduits such as well boreholes could extend many kilometers from the injection site—farther than the CO2 plume itself. The traditional approach to address potential brine leakage related to fluid injection is to set an area of fixed radius around the injection well/zone and to examine wells and other potentially open pathways located in the “Area-of-Review” (AoR). This suggests that the AoR needs to be defined in terms of the potential for a given pressure perturbation to drive upward fluid flow in any given system rather than on some arbitrary pressure rise. We present an analysis that focuses on the changes in density/salinity of the fluids in the potentially leaking wellbore.Bureau of Economic Geolog
Rifts in Spreading Wax Layers
We report experimental results on the rift formation between two freezing wax
plates. The plates were pulled apart with constant velocity, while floating on
the melt, in a way akin to the tectonic plates of the earth's crust. At slow
spreading rates, a rift, initially perpendicular to the spreading direction,
was found to be stable, while above a critical spreading rate a "spiky" rift
with fracture zones almost parallel to the spreading direction developed. At
yet higher spreading rates a second transition from the spiky rift to a zig-zag
pattern occurred. In this regime the rift can be characterized by a single
angle which was found to be dependent on the spreading rate. We show that the
oblique spreading angles agree with a simple geometrical model. The coarsening
of the zig-zag pattern over time and the three-dimensional structure of the
solidified crust are also discussed.Comment: 4 pages, Postscript fil
Identifying a sufficient core group for trachoma transmission.
BackgroundIn many infectious diseases, a core group of individuals plays a disproportionate role in transmission. If these individuals were effectively prevented from transmitting infection, for example with a perfect vaccine, then the disease would disappear in the remainder of the community. No vaccine has yet proven effective against the ocular strains of chlamydia that cause trachoma. However, repeated treatment with oral azithromycin may be able to prevent individuals from effectively transmitting trachoma.Methodology/principal findingsHere we assess several methods for identifying a core group for trachoma, assuming varying degrees of knowledge about the transmission process. We determine the minimal core group from a completely specified model, fitted to results from a large Ethiopian trial. We compare this benchmark to a core group that could actually be identified from information available to trachoma programs. For example, determined from the rate of return of infection in a community after mass treatments, or from the equilibrium prevalence of infection.Conclusions/significanceSufficient groups are relatively easy for programs to identify, but will likely be larger than the theoretical minimum
Bodyspace at the pub: sexual orientations and organizational space
In this article we argue that sexuality is not only an undercurrent of service environments, but is integral to the way that these workspaces are experienced and negotiated. Through drawing on Sara Ahmed’s (2006a) ‘orientation’ thesis, we develop a concept of ‘bodyspace’ to suggest that individuals understand, shape and make meaning of work spaces through complex sexually-orientated negotiations. Presenting analysis from a study of UK pubs, we explore bodyspace in the lived experience of workplace sexuality through three elements of orientation: background; bodily dwelling; and lines of directionality. Our findings show how organizational spaces afford or mitigate possibilities for particular bodies, which simultaneously shape expectations and experiences of sexuality at work. Bodyspace therefore provides one way of exposing the connection between sexual ‘orientation’ and the lived experience of service sector work
Spectroscopic studies of individual plasmon resonant nanoparticles
We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plasmon resonant nanoparticles, along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically, and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds, and color images can be captured using consumer digital color cameras. Spheres, tetrahedrons, and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized, and their spectra correlated with their shape and size as determined by transmission electron microscope (TEM). The unique shape, size, composition, and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles
- …