2,787 research outputs found

    Multisymplectic approach to integrable defects in the sine-Gordon model

    Get PDF
    Ideas from the theory of multisymplectic systems, introduced recently in integrable systems by the author and Kundu to discuss Liouville integrability in classical field theories with a defect, are applied to the sine-Gordon model. The key ingredient is the introduction of a second Poisson bracket in the theory that allows for a Hamiltonian description of the model that is completely equivalent to the standard one, in the absence of a defect. In the presence of a defect described by frozen Bäcklund transformations, our approach based on the new bracket unifies the various tools used so far to attack the problem. It also gets rid of the known issues related to the evaluation of the Poisson brackets of the defect matrix which involve fields at coinciding space point (the location of the defect). The original Lagrangian approach also finds a nice reinterpretation in terms of the canonical transformation representing the defect conditions

    Interplay between Zamolodchikov-Faddeev and Reflection-Transmission algebras

    Full text link
    We show that a suitable coset algebra, constructed in terms of an extension of the Zamolodchikov-Faddeev algebra, is homomorphic to the Reflection-Transmission algebra, as it appears in the study of integrable systems with impurity.Comment: 8 pages; a misprint in eq. (2.14) and (2.15) has been correcte

    Form factors of boundary fields for A(2)-affine Toda field theory

    Get PDF
    In this paper we carry out the boundary form factor program for the A(2)-affine Toda field theory at the self-dual point. The latter is an integrable model consisting of a pair of particles which are conjugated to each other and possessing two bound states resulting from the scattering processes 1 +1 -> 2 and 2+2-> 1. We obtain solutions up to four particle form factors for two families of fields which can be identified with spinless and spin-1 fields of the bulk theory. Previously known as well as new bulk form factor solutions are obtained as a particular limit of ours. Minimal solutions of the boundary form factor equations for all A(n)-affine Toda field theories are given, which will serve as starting point for a generalisation of our results to higher rank algebras.Comment: 24 pages LaTeX, 1 figur

    On Instantons and Zero Modes of N=1/2 SYM Theory

    Full text link
    We study zero modes of N=1/2 supersymmetric Yang-Mills action in the background of instantons. In this background, because of a quartic antichiral fermionic term in the action, the fermionic solutions of the equations of motion are not in general zero modes of the action. Hence, when there are fermionic solutions, the action is no longer minimized by instantons. By deforming the instanton equation in the presence of fermions, we write down the zero mode equations. The solutions satisfy the equations of motion, and saturate the BPS bound. The deformed instanton equations imply that the finite action solutions have U(1) connections which are not flat anymore.Comment: 9 pages, latex file, added references, minor change

    Toda Lattice Models with Boundary

    Get PDF
    We consider the soliton solutions in 1- and (1+1)-dimensional Toda lattice models with a boundary. We make use of the solutions already known on a full line by means of the Hirota's method. We explicitly construct the solutions satisfying the boundary conditions. The Z{\bf Z}_{\infty}-symmetric boundary condition can be introduced by the two-soliton solutions naturally.Comment: 9 pages, latex, no figure

    Non-Abelian Vortices, Super-Yang-Mills Theory and Spin(7)-Instantons

    Full text link
    We consider a complex vector bundle E endowed with a connection A over the eight-dimensional manifold R^2 x G/H, where G/H = SU(3)/U(1)xU(1) is a homogeneous space provided with a never integrable almost complex structure and a family of SU(3)-structures. We establish an equivalence between G-invariant solutions A of the Spin(7)-instanton equations on R^2 x G/H and general solutions of non-Abelian coupled vortex equations on R^2. These vortices are BPS solitons in a d=4 gauge theory obtained from N=1 supersymmetric Yang-Mills theory in ten dimensions compactified on the coset space G/H with an SU(3)-structure. The novelty of the obtained vortex equations lies in the fact that Higgs fields, defining morphisms of vector bundles over R^2, are not holomorphic in the generic case. Finally, we introduce BPS vortex equations in N=4 super Yang-Mills theory and show that they have the same feature.Comment: 14 pages; v2: typos fixed, published versio

    Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis

    Get PDF
    This paper describes improved sensitivity when using biosensors based on microfabricated microelectrodes to detect DNA, with the goal of progressing towards a low cost and mass manufacturable assay for antibiotic resistance in tuberculosis (TB). The microelectrodes gave a near 20 times improvement in sensitivity compared to polycrystalline macroelectrodes. In addition, experimental parameters such as redox mediator concentration and experimental technique were investigated and optimised. It was found that lower concentrations of redox mediator gave higher signal changes when measuring hybridisation events and, at these lower concentrations, square wave voltammetry was more sensitive and consistent than differential pulse voltammetry. Together, this paper presents a quantifiable comparison of macroelectrode and microelectrode DNA biosensors. The final assay demonstrates enhanced sensitivity through reduction of sensor size, reduction of redox mediator concentration and judicious choice of detection technique, therefore maintaining manufacturability for incorporation into point of care tests and lab-on-a-chip devices

    Noncommutative U(1) Instantons in Eight Dimensional Yang-Mills Theory

    Get PDF
    We study the noncommutative version of the extended ADHM construction in the eight dimensional U(1) Yang-Mills theory. This construction gives rise to the solutions of the BPS equations in the Yang-Mills theory, and these solutions preserve at least 3/16 of supersymmetries. In a wide subspace of the extended ADHM data, we show that the integer kk which appears in the extended ADHM construction should be interpreted as the D4D4-brane charge rather than the D0D0-brane charge by explicitly calculating the topological charges in the case that the noncommutativity parameter is anti-self-dual. We also find the relationship with the solution generating technique and show that the integer kk can be interpreted as the charge of the D0D0-brane bound to the D8D8-brane with the BB-field in the case that the noncommutativity parameter is self-dual.Comment: 22 page

    Requirements and validation of a prototype learning health system for clinical diagnosis

    Get PDF
    Introduction Diagnostic error is a major threat to patient safety in the context of family practice. The patient safety implications are severe for both patient and clinician. Traditional approaches to diagnostic decision support have lacked broad acceptance for a number of well-documented reasons: poor integration with electronic health records and clinician workflow, static evidence that lacks transparency and trust, and use of proprietary technical standards hindering wider interoperability. The learning health system (LHS) provides a suitable infrastructure for development of a new breed of learning decision support tools. These tools exploit the potential for appropriate use of the growing volumes of aggregated sources of electronic health records. Methods We describe the experiences of the TRANSFoRm project developing a diagnostic decision support infrastructure consistent with the wider goals of the LHS. We describe an architecture that is model driven, service oriented, constructed using open standards, and supports evidence derived from electronic sources of patient data. We describe the architecture and implementation of 2 critical aspects for a successful LHS: the model representation and translation of clinical evidence into effective practice and the generation of curated clinical evidence that can be used to populate those models, thus closing the LHS loop. Results/Conclusions Six core design requirements for implementing a diagnostic LHS are identified and successfully implemented as part of this research work. A number of significant technical and policy challenges are identified for the LHS community to consider, and these are discussed in the context of evaluating this work: medico-legal responsibility for generated diagnostic evidence, developing trust in the LHS (particularly important from the perspective of decision support), and constraints imposed by clinical terminologies on evidence generation

    Quantum corrections to static solutions of Nahm equation and Sin-Gordon models via generalized zeta-function

    Full text link
    One-dimensional Yang-Mills Equations are considered from a point of view of a class of nonlinear Klein-Gordon-Fock models. The case of self-dual Nahm equations and non-self-dual models are discussed. A quasiclassical quantization of the models is performed by means of generalized zeta-function and its representation in terms of a Green function diagonal for a heat equation with the correspondent potential. It is used to evaluate the functional integral and quantum corrections to mass in the quasiclassical approximation. Quantum corrections to a few periodic (and kink) solutions of the Nahm as a particular case of the Ginzburg-Landau (phi-in-quadro) and and Sin-Gordon models are evaluated in arbitrary dimensions. The Green function diagonal for heat equation with a finite-gap potential is constructed by universal description via solutions of Hermit equation. An alternative approach based on Baker-Akhiezer functions for KP equation is proposed . The generalized zeta-function and its derivative at zero point as the quantum corrections to mass is expressed in terms of elliptic integrals.Comment: Workshop Nonlinear Physics and Experiment; Gallipoli, 200
    corecore