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Abstract

Introduction: Diagnostic error is a major threat to patient safety in the context of family

practice. The patient safety implications are severe for both patient and clinician. Traditional

approaches to diagnostic decision support have lacked broad acceptance for a number of well‐

documented reasons: poor integration with electronic health records and clinician workflow,

static evidence that lacks transparency and trust, and use of proprietary technical standards

hindering wider interoperability. The learning health system (LHS) provides a suitable infrastructure

for development of a new breed of learning decision support tools. These tools exploit the potential

for appropriate use of the growing volumes of aggregated sources of electronic health records.

Methods: We describe the experiences of the TRANSFoRm project developing a diagnostic

decision support infrastructure consistent with the wider goals of the LHS. We describe an

architecture that is model driven, service oriented, constructed using open standards, and

supports evidence derived from electronic sources of patient data. We describe the architecture

and implementation of 2 critical aspects for a successful LHS: the model representation and

translation of clinical evidence into effective practice and the generation of curated clinical

evidence that can be used to populate those models, thus closing the LHS loop.

Results/Conclusions: Six core design requirements for implementing a diagnostic LHS are

identified and successfully implemented as part of this research work. A number of significant

technical and policy challenges are identified for the LHS community to consider, and these are

discussed in the context of evaluating this work: medico‐legal responsibility for generated

diagnostic evidence, developing trust in the LHS (particularly important from the perspective of

decision support), and constraints imposed by clinical terminologies on evidence generation.

KEYWORDS

diagnostic decision support systems, knowledge discovery, knowledge representation, learning

health systems
1 | INTRODUCTION

A recent Academy of Medicine report has highlighted the importance

of diagnostic error in medicine.1 Diagnosis in family practice relates
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to a wide range of poorly differentiated problems. In specialist care,

this means achieving sufficiently precise diagnoses in a world where

therapies are increasingly targeted at specific phenotypes. Diagnostic

error has been shown to be the single biggest source of malpractice
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claims in family practice in both the United States and the United

Kingdom2,3 and to be the commonest reported safety incident in UK

primary care.4 A recent report also highlighted the financial impact of

such errors with an average pay out for each individual malpractice

claim in that study calculated to be $442 000, a huge financial burden

at a time when health systems can least afford it.2 The development of

diagnostic decision support systems has attempted to address these

problems with limited success and acceptance in actual clinical

practice. Some of the challenges in delivering effective diagnostic

decision support are technical in nature and well understood: poor

integration with electronic health records (EHRs) and clinician

workflow, static black‐box rule–based evidence that lacks

transparency and trust, and use of proprietary technical standards

hindering wider interoperability.5-9

There is a strong link between general practitioners' initial

diagnostic impressions and their subsequent diagnosis and

management of common presentations.10 Recent data show that this

phenomenon is not simply one of hypothesis generation but also of

subconscious information distortion.11-13 The fact that family

practice acts as a gatekeeper in many countries to direct patients

to services within the wider health system means that these errors

also have knock‐on effects.14,15 Diagnostic error therefore

constitutes a recognised threat to patient safety in family practice

with profound impacts for both patient prognosis and clinician

professional reputation.

Traditional channels for generating and disseminating clinical

evidence have not translated well into decision support tools. The

current translational process is measured in years and highly

dependent on outputs from traditional clinical trials.16 To the great

frustration of many clinical staff, the effective practice of evidence‐

based diagnosis relies on the management of a corpus of clinical

knowledge in the form of static, document‐based guidelines. This

evidence base is growing without tools to refine that knowledge

appropriately for use in any presenting patient case.17 A more

fundamental question is yet to be addressed relating to the means

of production of clinical evidence: How do we facilitate an

efficient cycle of derivation, curation, and dissemination of clinical

evidence to support clinical decision‐making? These are

fundamental questions that belong at the heart of a learning health

system (LHS).18,19

The TRANSFoRm project has developed an LHS for diagnosis as

part of the development of a broader LHS technical infrastructure to

drive electronic research in family practice.20 This paper describes

the design, development, and implementation of the diagnostic

evidence service focussing on both evidence dissemination and

evidence derivation from aggegated sources of electronic family

practice clinical data. We describe the implementation of the

following requirements for the TRANSFoRm LHS for diagnosis:

1. A generalizable model for the representation of diagnostic

evidence: This model captures the necessary concepts required

to fully support diagnostic reasoning in family practice. It is

independent of any specific diagnostic condition and flexible

enough to be populated with evidence supporting diagnosis of

any given diagnostic condition.
2. Model support for evidence binding to coded clinical

terminologies: The evidence model represents clinical evidence

independently of clinical coding schemes, whilst supporting

optional binding to recognised clinical classifications or

terminologies. As will be demonstrated later, support for coded

data allows for easier integration with existing EHRs along with

collection of unambiguous and structured diagnostic data that

can in itself be aggregated and used to generate data‐mined

clinical evidence.

3. A method of data mining aggregated coded EHR data sets: To

support dynamic generation of clinical evidence, an LHS learning

loop is necessary to provide for generation and update of

quantified clinical evidence with diagnostic knowledge obtained

on the basis of coded data captured through the EHR.

4. A clinical evidence service for disseminating diagnostic evidence

independently of EHRs: This dissemination mechanism is based

on open technical interoperability standards to provide for easier

integration and use by a variety of clinical EHR systems.

5. An EHR integrated decision support tool that supports presenta-

tion of diagnostic clinical evidence: This diagnostic evidence

should be fully integrated with the EHR and present evidence in

a manner that will positively influence clinical decision‐making.

6. Integrated provenance: Versioning of evidence and recording of

decision support system (DSS) recommendations in the EHR are

required along with ongoing monitoring of accuracy of rules to

facilitate evidence learning and trust.
2 | METHODS

Existing approaches to implementing decision support for diagnosis

such as ISABEL and DXplain rely on a knowledge engine to define a

series of rules in the form of a proprietary database of knowledge tied

to a single application.21,22 Other approaches to decision support for

interventions and disease management have used rules triggered or

combined together in the form of guidelines based on statements

using rule engines such as DROOLS and knowledge rule languages like

Arden Syntax, GLIF, and GELLO.23-28 A more recent approach provides

for separation of the actual representation of clinical knowledge using

an underlying ontology model and the dissemination of that

knowledge using semantic web technologies.29-31 These models define

the named directional relationships between evidence facts in a unified

model structure. Proponents argue that a number of desirable benefits

result from such a model‐based approach: easier maintenance through

separation of application from knowledge, ability to reason from cue to

diagnosis and from diagnosis to cues using the same knowledge

structure, and explicit definition of modelling assumptions along with

“open” access to underlying knowledge.32 A core design requirement

for TRANSFoRm was to apply such a model and service‐based

approach to implementing a learning diagnostic decision support tool.

On the basis of the 6 requirements previously identified, the

architecture of the TRANSFoRm diagnostic decision support system

was developed as a number of distinct components shown in
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Figure 1. The design and implementation of these requirements is sub-

sequently discussed in detail.
2.1 | A generalizable model for the representation of
diagnostic evidence

The diagnostic process in family practice requires formulation of a

working diagnosis based on the primary presenting patient complaint

or reason for encounter (RfE).33 Consideration is given to each

candidate differential diagnosis with a view to ruling it in or out based

on the confirmed patient diagnostic cues identified through consulta-

tion.34,35 The clinical concepts to support a diagnostic process have

been modelled as an ontology of clinical evidence shown in Figure 2.

The ontology design methodology used is based on the design

practices advocated by the work of Gruninger and Fox.36

The model provides for representation of the relationships

between a presenting patient RfE and the associated candidate

differential diagnoses to consider. The evidence relating to any

particular diagnosis is captured as associated diagnostic cues, of which

there are cue sub‐concepts to represent clinician‐observed signs,

patient‐reported symptoms, risk factors, and clinical tests. The

quantified measure of association, in the form of a likelihood ratio,

for example, of an RfE or diagnostic cue relating to a particular

diagnosis is represented by the quantification concept. Each

quantification exists within the context of a particular demographic
FIGURE 1 Component architecture of the TRANSFoRm decision support
context. More than one quantification for different demographic

contexts may exist for the same RfE/cue/diagnosis relationship.
2.2 | Model support for evidence binding to coded
clinical terminologies

Semantic interoperability is provided for by binding terminology to the

clinical concepts themselves. This is used to associate potentially many

different clinical terminology codes for any single ontology RfE, cue, or

diagnosis. Specifically, we have supported interoperability with a single

EHR vendor in the United Kingdom using National Health Service

(NHS) read codes Clinical Terms Version 3.37 Localisation support to

allow easier searching by a third‐party consumer for ontology terms

using locally defined synonyms is provided for by the “synonym”

concept. An example of concepts and associated instances (in red) of

the diagnostic cue concept for a patient history of irritable bowel

syndrome, with an associated NHS read code “14CF.00” and local

synonym “HO IBS” is shown in Figure 3. The ontology can support

other coding schemes including ICPC2, ICD10, SNOMED, and

UMLS.38-41
2.3 | A method of data mining aggregated coded
EHR data sets

The data mining process and underlying methodology for interpreta-

tion of relative “strength” of evidence are illustrated and discussed
system. EHR indicates electronic health record



FIGURE 3 Example of cue ontology concept instance for “history of
irritable bowel syndrome.” RfE indicates reason for encounter

FIGURE 2 Core ontology concepts and relationships for knowledge representation. RfE indicates reason for encounter

FIGURE 4 The steps of the knowledge derivation process using data mini
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with examples of quantified clinical evidence elsewhere but will be

summarised here.42,43 An open source data analysis tool, the Konstanz

Information Miner (KNIME), was used to derive association rules based

on ICPC2 coded data in an episode of care structure obtained from the

openly available TransHIS EHR. The association rules identify all

possible combinations of RfE, diagnostic cues, and demographic

variables (antecedent variables) that are linked with a recorded

diagnostic outcome (consequent variable).

The distinct steps implemented in the data mining process as

shown in Figure 4 were as follows:

• Step 1—derivation of association rules linking RfE, diagnostic cues,

and demographics to a recorded diagnosis made during the first

encounter of a new episode of care.

• Step 2—calculation of association rule quality measures, such as

likelihood ratios LR+ and LR−, to determine the relative strength
ng. KNIME indicates Konstanz Information Miner
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of each rule association derived to support Bayesian reasoning in

the form of a post‐test probability calculation for each diagnosis.

• Step 3—curation and filtering of association rules to allow

selection of “high‐quality” association rules.

• Step 4— clinical review of selected rules to assess clinical validity

of rules with respect to the wider clinical body of evidence and

transfer to evidence service.

• Step 5—import of evidence rules to clinical evidence service.

• Step 6—evidence representation and dissemination through

evidence ontology and service.
2.3.1 | Evidence curation web tool

A web‐based association rule viewer allows curation and clinical

review of all generated association rules from the KNIME tool.44 The

tool allows filtering of all rules generated from KNIME on any of the

coded ICPC2 antecedent variables (RfEs or diagnostic cues/anams,

and demographics), shown in Figure 5. The outcome diagnosis being

examined can be filtered by selecting a consecutive variable. In addi-

tion, thresholds can be set on the defined quality measures to filter

based on the relative strength of the rules required. These measures

include the number of occurrences of a rule (support), the positive or

negative likelihood ratios for the rule (including 90% confidence inter-

vals), and the sensitivity or specificity of the rule. A scenario name can
IGURE 5 Filters available in the web tool for clinical evidence review. Rf

IGURE 6 The rule detail selection window showing textual descriptions o
he Netherlands population
be entered that identifies a particular snapshot of rules run on a certain

date. This allows multiple copies of versioned rules at different points

in time to be stored and retrieved on the basis of a scenario label.

The “filter” button selects the required rules into the main rule

viewer screen in the centre of the screen shown in Figure 6. By

highlighting a particular rule, the associated rule descriptions are

shown along with 95% confidence intervals.

Rules of interest can be selected for deployment to the evidence

service from the main screen as an Extensible Markup Language

(XML)‐exported format. An example of rules export generation is

shown in Figure 7.
2.3.2 | Evidence service association rule import

The Ontology Updater tool is a command line tool developed as part of

the TRANSFoRm project for the purpose of sequentially processing

each generated XML rule and updating the clinical evidence service

to reflect the updated evidence and quantity measures. A quantifica-

tion is a unique combination of antecedent variables, consecutive,

and demographic context. If a quantification with the precise

combination of these elements is not found in the ontology, then it is

created. This quantification is then linked with the relevant RfE objects

and differential diagnoses objects in the ontology. If it exists already,

then the quantification measure values are updated. The quantifica-

tions are then made available through the evidence service using a

Representational state transfer (REST) query as shown in Figure 8.
E indicates reason for encounter

f dysuria as a presenting complaint indicating urinary tract infection for



FIGURE 7 Generation of urinary tract infection association rules export Extensible Markup Language from the web rule sender
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2.4 | A clinical evidence service for disseminating
diagnostic evidence independently of EHRs

The clinical evidence service consists of 3 implementation layers.

The ontology is implemented as a Web Ontology Language model

using Protégé version 4.3 and hosted on a Sesame triple store.45-47

The implementation technologies for the 3 layers are summarised in

Figure 9. The persistence layer provides a data store for ontology

hosting upon which the evidence service is constructed. This

provides a platform for multi‐user access and dynamic update of

ontology clinical content through a programmable interface. The

service layer provides a fully functional Jersey REST‐based web

interface with defined end points to allow parameterised querying

of diagnostic questions based on patient data supplied from a

third‐party consumer.48

Using structured evidence service end points, we can access any

required ontology concept with results returned as XML (default),

JavaScript Object Notation, or Resource Description Framework

formats.49-51 The REST query to access the differentials to consider

for a patient presenting with abdominal pain for example is

http://host/ClinicalEvidencerRESTService/interfaces/query/rfes/

differentials/AbdominalPainRFE

To access the cues supporting diagnosis of urinary tract infection,

shown in Figure 10, the query is

http://host/ClinicalEvidenceRESTService/interfaces/query/dif-

ferentials/cues/UrinaryTractInfection

Sesame also provides flexibility beyond the defined end points by

providing functionality to process custom ad hoc Sesame triple store

queries executed directly against its own accessible web service

interface.
The REST client handles exchange of patient data between the

decision support tool with appropriate calls sent to the back‐end

evidence service. The client accepts patient data in the form of an

XML patient evidence set describing the patient RfE, demographics

(extracted from the EHR), and the underlying cues confirmed through

consultation with the patient (extracted from the integrated decision

support tool itself) shown in Figure 11.
2.5 | An EHR integrated decision support tool that
supports presentation of diagnostic clinical evidence

The evidence service was made available for use with theTRANSFoRm

decision support tool that was developed separately. The design

requirements and clinical motivation for implementing the decision

support tool are described elsewhere and summarised here.52,53 The

tool supported appropriate diagnostic cues for 78 diagnostic condi-

tions relating to 3 presenting patient complaints: abdominal pain, chest

pain, and dyspnoea.

The evidence service provides the decision support tool with

ontology‐driven coded prompting and recording of coded patient diag-

nostic cues as shown in Figure 12. The diagnostic decision support tool

is embedded and interoperable with the In Practice Systems Vision 3

EHR using the EHR application programmable interface (API). The tool

allows for bottom‐up input of observed patient cues independent of

associated diagnosis (left window) or top‐down drilling into and selec-

tion of evidence cues supporting specific diagnoses (right window).

The differential diagnoses list is based on the presenting RfE and

ordered in descending cue count based on the number of patient cues

confirmed present for each differential along with the supporting

http://host/ClinicalEvidencerRESTService/interfaces/query/rfes/differentials/AbdominalPainRFE
http://host/ClinicalEvidencerRESTService/interfaces/query/rfes/differentials/AbdominalPainRFE
http://host/ClinicalEvidenceRESTService/interfaces/query/differentials/cues/UrinaryTractInfection
http://host/ClinicalEvidenceRESTService/interfaces/query/differentials/cues/UrinaryTractInfection


FIGURE 8 Association rule available evidence made available as a quantified value through the clinical evidence service
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underlying evidence cues for each diagnosis. Upon exiting the tool, a

working diagnosis can be selected. The evidence cues supporting the

current working diagnosis collected during the consultation are coded,

saved, and accessible from the patient's EHR for future reference. The

recording of this diagnostic consultation data supports a feedback loop

to enable further data mining of EHR data to enable further evidence

generation and update.
2.6 | Integrated provenance

Close attention to automatically captured computable provenance is

critical. This operates at 2 levels. Firstly, at patient level, versioning of

the evidence and recording the recommendations of the DSS in the

EHR are needed. Secondly, at system level, monitoring of ongoing
accuracy of the rules against long‐term outcomes allows the system

to improve (a critical part of learning) and facilitates trust. Our system

used a novel provenance architecture described elsewhere. The

architecture is based on W3C PROV standard and the concept of

provenance templates to automatically capture the audit trail of the

recommendationsmade, actions performed, and rules and data sets used.54
3 | RESULTS AND ARCHITECTURAL
VALIDATION

A clinical evaluation of the decision support tool itself has been

published separately showing an 8% to 9% absolute improvement in

diagnostic accuracy, and general practitioners coded significantly more



FIGURE 9 Evidence service implementation
technologies. API indicates Application
Programmable Interface; OWL, Web Ontology
Language; RDF, Resource Description
Framework; SPARQL, Sesame triple store
query language
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data when using the DSS (a prerequisite for producing more primary

care clinical evidence).55 In addition, clinicians found the tool easy to

use and learned it quickly. The average length of consultations did

not significantly increase (averaged around 10 min per consultation

with and without use of the tool).55

A validation of this work focussed on the architecture itself and

was done on the basis of a comparison to technical best practice in

diagnostic decision support development as described in reviews of

desirable architectural features for ensuring successful decision

support.5,56 These reviews of features for implementing successful

decision support identify desirable functions for comparison of our

architecture with other leaders in this area. Each desirable feature is

discussed in the context of this work to assess if it has been satisfied.

Avoids vocabulary issues—(satisfied)—the decision support

system should avoid conflicts with terminology and vocabulary. The

clinical evidence service specifically addresses this through the

representation of clinical evidence independently as a model with

explicit support for binding of vocabulary terms to that evidence.

Any desired vocabulary or terminology may bound to that model.

Shareable—(satisfied)—the knowledge base should be shareable

across many systems. This is explicitly satisfied through provision of

a separate clinical evidence service and support for delivery of clinical

evidence to local sites using openly available technical standards. Some

local integration using a local EHR API is required to enable saving of

consultation data to the local EHR.

Can view decision support content—(satisfied)—decision support

knowledge can be viewed in a number of ways using this architecture.

Queries can be run directly using the Sesame triple store query

language. Queries can also be run using the web service itself and

obtained in XML format as demonstrated. To generate human

interpretable versions of the XML, it will be relatively straightforward

(but not done here) to generate an application that applies XML

formatting using stylesheets to present the content as a document.

Data‐mined rule content is available through the web‐based data

mining tool. Finally, manually curated knowledge could be viewed

using the source ontology file through the Protégé modelling tool.
Content separate from code—(satisfied)—the explicit model‐based

approach using an ontology ensures that clinical evidence content is

separate from any coding done and implemented in the client layer.

Automatic central updates—(satisfied)—the discussion of the data

mining approach with support for data‐mined rule export and import

into the centralised clinical evidence demonstrates support for

centralised updates of evidence. Once updates are made, all client

decision support tools that consume the service can receive the

updates.

Content integrated into workflows—(satisfied)—the ability to

programmatically combine evidence service calls as part of a client

layer that implements a diagnostic workflow was implemented as part

of the evidence service REST client. A separate evaluation study

showed that clinicians found the EHR integrated tool useful and easy

to use from a workflow perspective, without imposing an overhead

on their consultation time.55

Supports event‐driven clinical decision support—(satisfied)—the

TRANSFoRm decision support tool demonstrated an event‐driven

form of decision support based on entering a presenting RfE that

triggers calls to the back‐end evidence service.

Supports non–event‐driven clinical decision support—(satisfied)

—the ability to trigger a decision support process based on a batch

scheduled process has not been explicitly demonstrated as part of this

work. The architecture however can support such a process through

the Jersey REST‐based interface and the Sesame API that allow

programmatic update or querying of the knowledge base.

Supports decision support over populations—(satisfied)—as per

the discussion on non–event‐driven clinical decision support, the

architecture can support batch processing over a population of

patients (rather than a single patient triggering a single event).

Enables separation of responsibilities—(satisfied)—this functional-

ity specifically addresses the need to separate programmer responsibil-

ities from clinical content curation responsibilities. These requirements

have been explicitly provided for through the separation of clinical

content in the form of models and the provision of curation tool for

reviewing evidence before import.



FIGURE 10 An evidence service reply describing the symptoms of urinary tract infection including frequency and haematuria with associated code
bindings
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Free choice of knowledge representation syntax—(satisfied)—this

functionality addresses whether users of the decision support

functionality need to have an explicit knowledge of the underlying

proprietary knowledge representation format to use it. In the case of

this architecture, the underlying knowledge is represented as an

ontology but is made available through the web service, which can

return results in XML, JavaScript Object Notation, and Resource

Description Framework formats. These formats are all based on open

and widely used technical standards that are not proprietary in nature.
4 | DISCUSSION

A number of important development issues arose during this work. A

crucial choice involved giving due consideration to the granularity of

coding schemes used at both ends of the LHS infrastructure. The

data‐mined evidence was based on coarsely granular ICPC2 EHR data.
The target EHR for decision support was based on a much finer

granularity in the form of NHS read codes. We demonstrated success

in deriving quantified ICPC2‐coded diagnostic knowledge that was

consistent with the clinical literature for some common clinical

conditions along with model‐based representation and service‐based

access to it. The ICPC2 was not a suitable terminology in itself for

representing epidemiological knowledge at the required level of

low granular detail to support diagnostic decision‐making. The

tension lies in the requirement of capturing evidence in the form of

non‐ambiguous, non‐overlapping classifiers, able to drive clinical

prediction rules and at sufficient granularity of diagnostic classification

that the available data are able to fill the categories adequately. As it

stands the TransHIS data are too small in volume to support UK

practice. Manually curated evidence based on clinical review of best

practice guidelines was necessary to fill that gap to construct clinical

scenarios with sufficient levels of clinical detail to demonstrate the

utility of the decision support tool itself. Careful consideration



FIGURE 11 An Extensible Markup Language patient evidence case submitted to the evidence service for a female patient presenting with chest
pain and symptoms including fatigue

FIGURE 12 The integrated diagnostic decision support window accessible from the patient electronic health record shown in the background (the
data presented are of a simulated patient)
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therefore needs to be given to the underlying EHR structure and

coding schemes used for knowledge generation along with the ability

to map between coding schemes used by EHRs where the knowledge

will be deployed.

The use of ICPC2 was driven by TransHIS as an openly available

aggregated EHR data source. The use of richer controlled data sources

of health care data for secondary use is more problematic with

concerns expressed relating to patient privacy and access by

commercial interests.57 If the LHS is to be successful at the scale that

is envisioned, the issue of ownership of patient data needs to be

definitively addressed in the public health interest to ensure access

to data at a large scale is a reality; otherwise, data silos will continue

to exist. In addition, considerable care and clinical input are required

in mapping fine‐grained terminologies to wider diagnostic concepts

in the ontology.

A crucial issue to consider is quality assurance in the form of

clinical reliability of the knowledge that is generated and disseminated

using these tools. Deployment of an LHS for diagnosis requires trust in

the evidence being built. The use of the provenance service is

therefore a fundamental requirement for developing trust through

evidence monitoring and improvement.54 In Europe and the United

States, this fact has been recognised in legislation that treats software

that has been developed for diagnostic purposes as a “medical device”

in its own right.58-60 This places consideration of quality assurance

issues and appropriate regulation to the forefront for such categories

of software.
5 | CONCLUSION

The 6 core requirements for implementing a diagnostic LHS as

identified at the outset were successfully implemented as part of this

research work. A number of unique aspects distinguish this work from

other DSS efforts:

• a focus on gathering evidence to support early diagnosis in primary

care (rather than secondary care),

• demonstrable integration with a real commercial primary care EHR

system (In Practice Systems in the United Kingdom),

• identification and implementation of best practices in decision

support design and architecture, and

• evaluation of the impact of the system on primary care clinical

decision‐making.

This work satisfies the 2 main requirements of the LHS supporting

both evidence generation and dissemination as part of an iterative

cycle. In addition, a validation of the architecture demonstrates that

the implementation supports features defined as current best practices

in decision support design.

The use of EHR data as provided for research purposes is not

without limitations. An underlying assumption that the EHR data

provided is provided “as‐is” and was of sufficiently “good quality”

without explicitly exploring what that means or doing a detailed

investigation to establish it.61 This was done on the basis that the data
set had already demonstrably been used to do data mining using

manual methods rather than information and communication technol-

ogy data mining methods.62,63 A data mining approach at the scale of

volume envisaged by the LHS would ideally ensure that quality proce-

dures are followed to ensure consistency of coding of patient data

across distributed locations. This would allow for meaningful

comparisons and aggregation of that underlying data without risk that

coding schemes are used differently in local contexts introducing data

bias. The curation of data‐mined evidence supported “versioning” of

evidence, and a limited comparison was done against clinical literature

to assess its clinical accuracy.42 More research is needed to improve

upon the manual nature of that curation process with a view to

supporting an iterative cycle of ongoing evidence improvement that

is sustainable and accurate.

The design and implementation of our evidence service is

consistent with recent initiatives to define service‐based provision

and access to EHRs and decision support systems such as the Fast

Healthcare Interoperability Resources initiative. Our work on primary

care data mining and evidence curation tools can also be viewed as

having applications to the wider problem of identifying clinically

significant features necessary for the authoring of openly portable

electronic phenotype definitions. These can be used for identification

of research cohorts across clinical networks for the purpose of

conducting genotype‐phenotype association studies, as demonstrated

by initiatives such as the eMerge network in the United States, for

example.64 Recent calls have also highlighted the need for more

research on diagnostic error in practice. The Committee on Diagnostic

Error in Health at the Institute of Medicine made a number of

important recommendations in this area in 2015.1 Specifically, they

recommended the development of “a coordinated research agenda

on the diagnostic process and diagnostic errors by the end of 2016.”

They make reference to the inclusion of “a broad range of stakeholders

including health IT industries” to develop decision support tools that
“ensure that health IT used in the diagnostic process

demonstrates usability, incorporates human factors

knowledge, integrates measurement capability, fits well

within clinical workflow, provides clinical decision

support, and facilitates the timely flow of information

among patients and health care professionals involved in

the diagnostic process.”1
The TRANSFoRm approach to diagnostic decision support can be

seen as a practical contribution to addressing those recommendations.

TRANSFoRm has demonstrated that the goals of the LHS are

closely aligned with the development of next generation decision

support tools. Further policy work is needed to ensure that these

tools can make use of the growing bodies of EHR data at scale, to

support derivation and dissemination of diagnostic evidence in

practice, supporting clinicians and driving real improvements in

patient safety.
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