3,057 research outputs found
Phase diagram of the ABC model with nonconserving processes
The three species ABC model of driven particles on a ring is generalized to
include vacancies and particle-nonconserving processes. The model exhibits
phase separation at high densities. For equal average densities of the three
species, it is shown that although the dynamics is {\it local}, it obeys
detailed balance with respect to a Hamiltonian with {\it long-range
interactions}, yielding a nonadditive free energy. The phase diagrams of the
conserving and nonconserving models, corresponding to the canonical and
grand-canonical ensembles, respectively, are calculated in the thermodynamic
limit. Both models exhibit a transition from a homogeneous to a phase-separated
state, although the phase diagrams are shown to differ from each other. This
conforms with the expected inequivalence of ensembles in equilibrium systems
with long-range interactions. These results are based on a stability analysis
of the homogeneous phase and exact solution of the hydrodynamic equations of
the models. They are supported by Monte-Carlo simulations. This study may serve
as a useful starting point for analyzing the phase diagram for unequal
densities, where detailed balance is not satisfied and thus a Hamiltonian
cannot be defined.Comment: 32 page, 7 figures. The paper was presented at Statphys24, held in
Cairns, Australia, July 201
Exact Quantum Solutions of Extraordinary N-body Problems
The wave functions of Boson and Fermion gases are known even when the
particles have harmonic interactions. Here we generalise these results by
solving exactly the N-body Schrodinger equation for potentials V that can be
any function of the sum of the squares of the distances of the particles from
one another in 3 dimensions. For the harmonic case that function is linear in
r^2. Explicit N-body solutions are given when U(r) = -2M \hbar^{-2} V(r) =
\zeta r^{-1} - \zeta_2 r^{-2}. Here M is the sum of the masses and r^2 = 1/2
M^{-2} Sigma Sigma m_I m_J ({\bf x}_I - {\bf x}_J)^2. For general U(r) the
solution is given in terms of the one or two body problem with potential U(r)
in 3 dimensions. The degeneracies of the levels are derived for distinguishable
particles, for Bosons of spin zero and for spin 1/2 Fermions. The latter
involve significant combinatorial analysis which may have application to the
shell model of atomic nuclei. For large N the Fermionic ground state gives the
binding energy of a degenerate white dwarf star treated as a giant atom with an
N-body wave function. The N-body forces involved in these extraordinary N-body
problems are not the usual sums of two body interactions, but nor are forces
between quarks or molecules. Bose-Einstein condensation of particles in 3
dimensions interacting via these strange potentials can be treated by this
method.Comment: 24 pages, Latex. Accepted for publication in Proceedings of the Royal
Societ
Combination of fluorescent and spin labels: a powerful method for the optimization of hydrophilic membranes for the separation of oil-in-water emulsions
A new method for assessing the quality of fibre coating based on a combination of fluorescence microscopy and electron paramagnetic resonance is presented in this work. An influence of the carboxymethylcellulose/polyvinylamine gel preparation method on the mobility of the spin label was established. The mobility of the spin label changes from 3.5 ns in the case of a polyvinylamine solution to 12.8 ns in the case of a cross-linked gel on the surface of the glass fibre. A qualitative relationship was found between the mobility of the spin label in the gel applied to the glass fibre and the rate of spreading of crude oil over its surface. This method can be used to make membranes for the separation of water-in-oil emulsions
Ensemble Inequivalence and the Spin-Glass Transition
We report on the ensemble inequivalence in a many-body spin-glass model with
integer spin. The spin-glass phase transition is of first order for certain
values of the crystal field strength and is dependent whether it was derived in
the microcanonical or the canonical ensemble. In the limit of infinitely
many-body interactions, the model is the integer-spin equivalent of the
random-energy model, and is solved exactly. We also derive the integer-spin
equivalent of the de Almeida-Thouless line.Comment: 19 pages, 7 figure
Synthesis of Cu(II)-containing TiO2-SiO2 binary xerogels by hydrolysis of a mixture of tetrabutoxytitanium, tetraethoxysilane, and copper(II) chloride in a water-ammonia atmosphere
A Cu(II)-containing binary xerogel TiO2-SiO2 was synthesized by joint hydrolysis of tetrabutoxytitanium, teraethoxysilane and copper(II) chloride dissolved in their mixture. The synthesis was performed in a vapor of 10% aqueous ammonia under static conditions. EPR spectroscopy was used to examine the state of Cu(II) in the xerogel matrix. Data on specific features of the behavior of saccharose within xerogel pores under heating were obtained. The catalytic activity of the xerogel was tested by the kinetic method on model reactions of hydrogen peroxide decomposition and oxidative dehydrogenation of trimethylhydroquinone. © 2013 Pleiades Publishing, Ltd
Conductive Atomic Force Microscopy study of local resistive switching by a complex signal in the yttria stabilized zirconia films
This work was supported by RFBR (18-42-520059р_а)
- …