13,232 research outputs found

    An architecture for intelligent task interruption

    Get PDF
    In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described

    A test of local Lorentz invariance with Compton scattering asymmetry

    Full text link
    We report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (nn). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of 1n<1.4×1081-n < 1.4 \times 10^{-8}. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients κ~0+YZ,cTX,κ~0+ZX\tilde{\kappa}_{0^+}^{YZ}, c_{TX}, \tilde{\kappa}_{0^+}^{ZX}, and cTYc_{TY}. Although, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. Future parity violating electron scattering experiments at Jefferson Lab will use higher energy electrons enabling better constraints.Comment: 7 pages, 5 figure

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
    corecore