13,232 research outputs found
An architecture for intelligent task interruption
In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described
Recommended from our members
System clock estimation based on clock wastage minimization
When synthesizing a hardware implementation from behavioral descriptions, an important decision is the selection of a clock cycle to schedule the datapath operations into control steps. Most existing behavioral synthesis systems either require the designer to specify the clock cycle explicitly or require that the delays of the operators used in the design be specified in multiples of a clock cycle. In the absence of any tool to guide the selection of a clock cycle, a bad choice of the clock period could adversely affect the performance of the synthesized design. We present an algorithm for estimating the system clock based on a clock wastage minimization criteria. Limitations of previous approaches to the problem are discussed. The results obtained prove that the clock cycle estimated by the Clock Wastage Minimization method produce faster designs than previous solutions to the problem
A test of local Lorentz invariance with Compton scattering asymmetry
We report on a measurement of the constancy and anisotropy of the speed of
light relative to the electrons in photon-electron scattering. We used the
Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C
at Jefferson Lab to test for deviations from unity of the vacuum refractive
index (). For photon energies in the range of 9 - 46 MeV, we obtain a new
limit of . In addition, the absence of sidereal
variation over the six month period of the measurement constrains any
anisotropies in the speed of light. These constitute the first study of Lorentz
invariance using Compton asymmetry. Within the minimal standard model extension
framework, our result yield limits on the photon and electron coefficients
, and .
Although, these limits are several orders of magnitude larger than the current
best limits, they demonstrate the feasibility of using Compton asymmetry for
tests of Lorentz invariance. Future parity violating electron scattering
experiments at Jefferson Lab will use higher energy electrons enabling better
constraints.Comment: 7 pages, 5 figure
Recommended from our members
Semantics and synthesis of signals in behavioral VHDL
Signals are a fundamental part of VHDL behavioral descriptions. There are many kinds of VHDL signals, each possesing complex and hence often misunderstood semantics. The result is that synthesis tools often inadequately address synthesis of signals. In this report, we first make clear the semantics of the various signal kinds shared by multiple processes through the use of conceptual hardware, rather than just text. Second, with the semantics firmly understood, we discuss techniques and issues in synthesizing actual hardware for shared signals. This information can be used to take a step towards synthesizing correct hardware from VHDL descriptions while greatly reducing current restrictions imposed by synthesis tools on allowable VHDL behavior
Self similar Barkhausen noise in magnetic domain wall motion
A model for domain wall motion in ferromagnets is analyzed. Long-range
magnetic dipolar interactions are shown to give rise to self-similar dynamics
when the external magnetic field is increased adiabatically. The power spectrum
of the resultant Barkhausen noise is of the form , where
can be estimated from the critical exponents for interface
depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
- …
