10,433 research outputs found
Power law burst and inter-burst interval distributions in the solar wind: turbulence or dissipative SOC ?
We calculate for the first time the probability density functions (PDFs) P of
burst energy e, duration T and inter-burst interval tau for a known turbulent
system in nature. Bursts in the earth-sun component of the Poynting flux at 1
AU in the solar wind were measured using the MFI and SWE experiments on the
NASA WIND spacecraft. We find P(e) and P(T) to be power laws, consistent with
self-organised criticality (SOC). We find also a power law form for P(tau) that
distinguishes this turbulent cascade from the exponential P(tau) of ideal SOC,
but not from some other SOC-like sandpile models. We discuss the implications
for the relation between SOC and turbulence.Comment: 3 pages, 1 figure. Submitted to PRL on 25th February 2000. Revised
version re-submitted on 9th May 2000. Second revised version submitted Phys.
Rev. E on 26th June, 200
Telemedicine in Space Flight - Summary of a NASA Workshop
The Exploration Medical Capability Element of the Human Research Program at NASA Johnson Space Center hosted the Telemedicine Workshop in January 2011 to discuss the medical operational concept for a crewed mission to a near-Earth asteroid (NEA) and to identify areas for future work and collaboration. With the increased likelihood of a medical incident on a long duration exploration mission to a near-Earth asteroid, as well as the fact that there will likely be limited medical capabilities and resources available to diagnose and treat medical conditions, it is anticipated that a more structured use of telemedicine will become highly desirable. The workshop was convened to solicit expert opinion on current telemedicine practices and on medical care in remote environments. Workshop Objectives: The workshop brought together leaders in telemedicine and remote medicine from The University of Texas Medical Branch, Henry Ford Hospital, Ontario Telemedicine Network, U.S. Army Institute of Surgical Research, University of Miami, American Telemedicine Association, Doctors Without Borders, and the Pan American Health Organization. The primary objectives of the workshop were to document the medical operations concept for a crewed mission to a NEA, to determine gaps between current capabilities and the capabilities outlined in the operations concept, to identify research required to close these gaps, and to discuss potential collaborations with external-to-NASA organizations with similar challenges. Summary of Discussions and Conclusions: The discussions held during the workshop and the conclusions reached by the workshop participants were grouped into seven categories: Crew Medical Officers, Patient Area in Spacecraft, Training, Electronic Medical Records, Intelligent Care Systems, Consultation Protocols, Prophylactic Surgical Procedures, and Data Prioritization. The key points discussed under each category will be presented
DEVELOPMENT OF A CRITERION METHOD TO DETERMINE PEAK MECHANICAL POWER OUTPUT IN A COUNTERMOVEMENT JUMP
The ability of players to repeatedly generate high levels of muscular power is a key determinant for success in many sports. Variations of the countermovement vertical jump (CMJ) have long been used as a means of measuring lower body power (LBP) (Fox and Mathews 1972). The criterion method of measuring of LBP is based on performance in a CMJ off a force platform (FP) (Hatze, 1999). Instantaneous power is determined from the product of the vertical ground reaction force (VGRF) and the velocity of the whole body centre of gravity, velocity being derived by the integration of the resultant VGRF. However, there seems to be no published standard protocol for the criterion method. The purpose of this study was to establish a standard protocol for the criterion method
G92-1097 Root and Crown Rot: Winterkill Complex of Winter Wheat
Root and crown rot--winterkill complex is discussed, including nature of the complex, symptoms, control, and management rationale. Root and crown rot of winter wheat is an interrelated disease complex caused by the interaction of infection of roots and crowns by Bipolaris sorokiniana and/or Fusarium graminearum and harsh winter conditions. It is an insidious, persistent and inconspicuous disease complex that reduces wheat yields each year. In extreme cases, entire fields or large areas within fields are killed. The ultimate effect is loss of stands, poor plant vigor, reduced yield and lower grain quality
Searching for Planets in the Hyades. I. The Keck Radial Velocity Survey
We describe a high-precision radial velocity search for jovian-mass
companions to main sequence stars in the Hyades star cluster. The Hyades
provides an extremely well controlled sample of stars of the same age, the same
metallicity, and a common birth and early dynamical environment. This sample
allows us to explore the dependence of the process of planet formation on only
a single independent variable: the stellar mass. In this paper we describe the
survey and summarize results for the first five years.Comment: 8 pages, 3 figures; To appear in the July 2002 issue of The
Astronomical Journa
Macroscopic control parameter for avalanche models for bursty transport
Similarity analysis is used to identify the control parameter RA for the subset of avalanching systems that can exhibit self-organized criticality (SOC). This parameter expresses the ratio of driving to dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is found to occur when RA-->0. This is in the opposite sense to (Kolmogorov) turbulence, thus identifying a deep distinction between turbulence and SOC and suggesting an observable property that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite RA with the same RA-->0 exponent if the system supports a sufficiently large range of lengthscales, necessary for SOC to be a candidate for physical (RA finite) systems
The IR-Completion of Gravity: What happens at Hubble Scales?
We have recently proposed an "Ultra-Strong" version of the Equivalence
Principle (EP) that is not satisfied by standard semiclassical gravity. In the
theory that we are conjecturing, the vacuum expectation value of the (bare)
energy momentum tensor is exactly the same as in flat space: quartically
divergent with the cut-off and with no spacetime dependent (subleading) ter ms.
The presence of such terms seems in fact related to some known difficulties,
such as the black hole information loss and the cosmological constant problem.
Since the terms that we want to get rid of are subleading in the high-momentum
expansion, we attempt to explore the conjectured theory by "IR-completing" GR.
We consider a scalar field in a flat FRW Universe and isolate the first
IR-correction to its Fourier modes operators that kills the quadratic (next to
leading) time dependent divergence of the stress energy tensor VEV. Analogously
to other modifications of field operators that have been proposed in the
literature (typically in the UV), the present approach seems to suggest a
breakdown (here, in the IR, at large distances) of the metric manifold
description. We show that corrections to GR are in fact very tiny, become
effective at distances comparable to the inverse curvature and do not contain
any adjustable parameter. Finally, we derive some cosmological implications. By
studying the consistency of the canonical commutation relations, we infer a
correction to the distance between two comoving observers, which grows as the
scale factor only when small compared to the Hubble length, but gets relevant
corrections otherwise. The corrections to cosmological distance measures are
also calculable and, for a spatially flat matter dominated Universe, go in the
direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde
Recommended from our members
NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING
Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP
Sol-gel based oxidation catalyst and coating system using same
An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state
- …