678 research outputs found

    Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle

    Get PDF
    Mineral hydration is an important geological process that influences the rheology and geochemistry of rocks and the fluid budget of the Earth's crust and mantle. Constant-stress differential compaction (CSDC) tests, dry and "wet"tests under confining pressure, and axial-stress tests were conducted for the first time to investigate the influence of triaxial stress on hydration in anhydrite-gypsum aggregates. Characterization of the samples before and after triaxial experiments was performed with optical and scanning electron microscopy, including energy-dispersive spectroscopy and electron backscatter diffraction mapping. Stress-strain data reveal that samples that underwent constant-stress differential compaction in the presence of fluids are g1/4g14g% to g1/4g41g% weaker than samples deformed under wet conditions. The microstructural analysis shows that there is a strong temporal and spatial connection between the geometry, distribution, and evolution of fractures and hydration products. The increasing reaction surface area in combination with pre-existing gypsum in a gypsum-bearing anhydrite rock led to rapid gypsification. The crystallographic orientations of newly formed vein gypsum have a systematic preferred orientation for long distances along veins, beyond the grain boundaries of wall-rock anhydrite. Gypsum crystallographic orientations in {100} and {010} are systematically and preferentially aligned parallel to the direction of maximum shear stress (45g to σ1). Gypsum is also not always topotactically linked to the wall-rock anhydrite in the immediate vicinity. This study proposes that the selective inheritance of crystal orientations from favourably oriented wall-rock anhydrite grains for the minimization of free energy for nucleation under stress leads to the systematic preferred orientation of large, new gypsum grains. A sequence is suggested for hydration under stress that requires the development of fractures accompanied by localized hydration. Hydration along fractures with a range of apertures up to 120gμm occurred in under 6gh. Once formed, gypsum-filled veins represent weak surfaces and are the locations of further shear fracturing, brecciation, and eventual brittle failure. These findings imply that non-hydrostatic stress has a significant influence on hydration rates and subsequent mechanical strength of rocks. This phenomenon is applicable across a wide range of geological environments in the Earth's crust and upper mantle

    Atomic kinetic energy, momentum distribution and structure of solid neon at zero-temperature

    Full text link
    We report on the calculation of the ground-state atomic kinetic energy, EkE_{k}, and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann's ratio and atomic density profile around the positions of the perfect crystalline lattice. Our value for EkE_{k} at the equilibrium density is 41.51(6)41.51(6) K, which agrees perfectly with the recent prediction made by Timms {\it et al.}, 41(2)41(2) K, based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4−204 - 20 K, and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid 4^4He in terms of the Debye model, in order to size the relevance of anharmonic effects in Ne.Comment: 20 pages, 7 figures. To be published in Physical Review

    Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation

    Full text link
    The kinetic energy of solid neon is calculated by a path-integral Monte Carlo approach with a refined Trotter- and finite-size extrapolation. These accurate data present significant quantum effects up to temperature T=20 K. They confirm previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures included by psfig

    In Situ Coordinated Analysis of Carbonaceous Chondrite Organic Matter

    Get PDF
    Microanalytical studies of carbonaceous chondrites (CCs) have identified a vast array of isotopically, chemically and texturally distinct organic components. These components were synthesized and processed within a range of physical and chemical environments, including the interstellar medium, the solar nebula and within asteroids. The nature and abundance of these molecules can be used to unravel the geochemical and isotopic record of their origins as well as their subsequent evolutionary journey

    Where are the Shocked Grains in the Hadean Zircon Record? Insights on the Preservation of Shocked Zircon and Their U-Pb Systematics

    Get PDF
    While the earliest history of many planetary bodies within the inner Solar System is dominated by intense bombardment, this record is missing from Earth due to active tectonics and erosion. Where-as rocks from the earliest history of Earth are absent, mineral relics, such as ancient detrital zircon concentrated in sediments within the Jack Hills, Narryer, Illara and Maynard Hills greenstone belts of the Yilgarn Craton in Western Australia preserve a record of this time.Shock in zircon: During shock deformation, resulting from hyper-velocity impact, zircon can be modified in crystallographically-controlled ways. This includes the development of planar and subplanar low-angle grain boundaries, the formation of mechanical twins, transformation to the high pressure polymorph reidite, development of polycrystalline microtexture, and dissociation to its dioxide constituents SiO2 and ZrO2

    Prevalence of tumor BRCA1 and BRCA2 dysfunction in unselected patients with ovarian cancer

    Get PDF
    Objective The therapeutic benefits of poly(ADP-ribose) polymerase inhibitors highlight the need to evaluate BRCA1/2 defects in tubal/ovarian cancer (OC). We sought to determine the pattern and disease characteristics associated with tumor BRCA1/2 mutations and BRCA1 methylation in women with OC. Methods We obtained 111 OC specimens from 2 university hospitals and assessed BRCA1/2 mutations and BRCA1 methylation in tumor DNA. The frequency and pattern of BRCA1/2 defects were examined. Associations between patient/disease characteristics and BRCA1/2 defects were ascertained (Fisher’s exact test). Platinum-free interval (PFI), progression-free survival (PFS), and overall survival (OS) based on the underlying BRCA1/2 defect were determined (Kaplan-Meier analysis [log-rank test]). Results We observed a BRCA1/2 dysfunction rate of 40% (28/70) in high-grade serous tubal/ovarian cancer (HGSC), including 14.3% BRCA1 methylation (n=10), 7.1% BRCA1 mutation (n=5), and 18.6% BRCA2 mutation (n=13). Defects in BRCA1/2 genes were associated with stage III/IV HGSC (BRCA1 methylation: P=0.005 [stage III/IV] and P=0.004 [HGSC]; BRCA1/2 mutation: P=0.03 [stage III/IV] and P<0.001 [HGSC]). Patients with BRCA1/2-mutated cancers showed improved OS (hazard ratio [HR], 0.65; 95% confidence interval [CI], 0.43–0.99; P=0.045) and a trend toward improved PFI (HR, 0.48; 95% CI, 0.22–1.06; P=0.07) and PFS (HR, 0.72; 95% CI, 0.51–1.03; P=0.07). No survival differences were observed between BRCA1-methylated and BRCA1/2 wild-type non-BRCA1-methylated cancers. Conclusion We observed a high tumor BRCA1/2 dysfunction rate in HGSC with a unique predominance of BRCA2 over BRCA1 mutations. While BRCA1/2 mutations conferred survival benefits in OC, no such association was observed with BRCA1 methylation

    Individual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall

    Get PDF
    © 2016 American Geophysical Union. All Rights Reserved. Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest significant changes in the global BC aerosol distribution due to human activity. However, little is known regarding BC's atmospheric distribution or aged particle characteristics before the twentieth century. Here we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and association with metals. In addition to conventionally occurring BC aggregates, we observed single BC monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted for in atmospheric models of BC

    Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein

    Get PDF
    Koala retrovirus (KoRV) infects the majority of Australia's koalas (Phascolarctos cinereus) and has been linked to several life-threatening diseases such as lymphoma and leukemia, as well as Chlamydia and thus poses a threat to the continued survival of this species. While quarantine and antiretroviral drug treatment are possible control measures, they are impractical, leaving vaccination as the only realistic option. In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South Australian koalas: KoRV infected or KoRV free. We report a successful vaccination response in the koalas with no vaccine-associated side effects. The vaccine induced a significant humoral immune response as well as the production of neutralizing antibodies in both groups of koalas. We also identified B-cell epitopes that were differentially recognized in KoRV-infected versus KoRV-free koalas following vaccination. Importantly, we also showed that vaccination had a therapeutic effect on koalas infected exogenously with KoRV by reducing their circulating viral load. Together, this study highlights the possibility of successfully developing a vaccine against KoRV infection in koalas.O Olagoke, D Miller, F Hemmatzadeh, T Stephenson, J Fabijan, P Hutt, S Finch, N Speight and P Timm
    • …
    corecore