32,405 research outputs found

    From propagators to glueballs in the Gribov-Zwanziger framework

    Get PDF
    Over the last years, lattice calculations in pure Yang-Mills gauge theory seem to have come more or less to a consensus. The ghost propagator is not enhanced and the gluon propagator is positivity violating, infrared suppressed and non-vanishing at zero momentum. From an analytical point of view, several groups are agreeing with these results. Among them, the refined Gribov-Zwanziger (RGZ) framework also accommodates for these results. The question which rises next is, if our models hold the right form for the propagators, how to extract information on the real physical observables, i.e. the glueballs? How do the operators which represent glueballs look like? We review the current status of this matter within the RGZ framework.Comment: 3 pages, Conference contribution for Confinement IX, Madrid 2010 (30/08-03/09), to appear in American Institute of Physics (AIP

    The lattice gluon propagator in renormalizable ξ\xi gauges

    Full text link
    We study the SU(3) gluon propagator in renormalizable RξR_\xi gauges implemented on a symmetric lattice with a total volume of (3.25 fm)4^4 for values of the guage fixing parameter up to ξ=0.5\xi=0.5. As expected, the longitudinal gluon dressing function stays constant at its tree-level value ξ\xi. Similar to the Landau gauge, the transverse RξR_\xi gauge gluon propagator saturates at a non-vanishing value in the deep infrared for all values of ξ\xi studied. We compare with very recent continuum studies and perform a simple analysis of the found saturation with a dynamically generated effective gluon mass.Comment: 6 pages, 4 figure

    Collapse of Primordial Clouds

    Full text link
    We present here studies of collapse of purely baryonic Population III objects with masses ranging from 10M10M_\odot to 106M10^6M_\odot. A spherical Lagrangian hydrodynamic code has been written to study the formation and evolution of the primordial clouds, from the beginning of the recombination era (zrec1500z_{rec} \sim 1500) until the redshift when the collapse occurs. All the relevant processes are included in the calculations, as well as, the expansion of the Universe. As initial condition we take different values for the Hubble constant and for the baryonic density parameter (considering however a purely baryonic Universe), as well as different density perturbation spectra, in order to see their influence on the behavior of the Population III objects evolution. We find, for example, that the first mass that collapses is 8.5×104M8.5\times10^4M_\odot for h=1h=1, Ω=0.1\Omega=0.1 and δi=δρ/ρ=(M/Mo)1/3(1+zrec)1\delta_i={\delta\rho / \rho}=(M / M_o)^{-1/3}(1+z_{rec})^{-1} with the mass scale Mo=1015MM_o=10^{15}M_\odot. For Mo=4×1017MM_o=4\times10^{17}M_\odot we obtain 4.4×104M4.4\times10^{4}M_\odot for the first mass that collapses. The cooling-heating and photon drag processes have a key role in the collapse of the clouds and in their thermal history. Our results show, for example, that when we disregard the Compton cooling-heating, the collapse of the objects with masses >8.5×104M>8.5\times10^4M_\odot occurs earlier. On the other hand, disregarding the photon drag process, the collapse occurs at a higher redshift.Comment: 10 pages, MN plain TeX macros v1.6 file, 9 PS figures. Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES"). MNRAS in pres

    Collapse of Primordial Clouds II. The Role of Dark Matter

    Full text link
    In this article we extend the study performed in our previous article on the collapse of primordial objects. We here analyze the behavior of the physical parameters for clouds ranging from 107M10^7M_\odot to 1015M10^{15}M_\odot. We studied the dynamical evolution of these clouds in two ways: purely baryonic clouds and clouds with non-baryonic dark matter included. We start the calculations at the beginning of the recombination era, following the evolution of the structure until the collapse (that we defined as the time when the density contrast of the baryonic matter is greater than 10410^4). We analyze the behavior of the several physical parameters of the clouds (as, e.g., the density contrast and the velocities of the baryonic matter and the dark matter) as a function of time and radial position in the cloud. In this study all physical processes that are relevant to the dynamical evolution of the primordial clouds, as for example photon-drag (due to the cosmic background radiation), hydrogen molecular production, besides the expansion of the Universe, are included in the calculations. In particular we find that the clouds, with dark matter, collapse at higher redshift when we compare the results with the purely baryonic models. As a general result we find that the distribution of the non-baryonic dark matter is more concentrated than the baryonic one. It is important to stress that we do not take into account the putative virialization of the non-baryonic dark matter, we just follow the time and spatial evolution of the cloud solving its hydrodynamical equations. We studied also the role of the cooling-heating processes in the purely baryonic clouds.Comment: 8 pages, MN plain TeX macros v1.6 file, 13 PS figures. Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES"). MNRAS in pres

    Irreversible Opinion Spreading on Scale-Free Networks

    Full text link
    We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barab\'asi-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.Comment: 9 pages, 10 figures; added results and discussion on uncorrelated scale-free networks; added references. To appear in PR

    Thermal dependence of the zero-bias conductance through a nanostructure

    Full text link
    We show that the conductance of a quantum wire side-coupled to a quantum dot, with a gate potential favoring the formation of a dot magnetic moment, is a universal function of the temperature. Universality prevails even if the currents through the dot and the wire interfere. We apply this result to the experimental data of Sato et al.[Phys. Rev. Lett. 95, 066801 (2005)].Comment: 6 pages, 3 figures. More detailed presentation, and updated references. Final version
    corecore