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From propagators to glueballs in the Gribov-Zwanziger
framework
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Abstract. Over the last years, lattice calculations in pure Yang-Mills gauge theory seem to have come more or less to a
consensus. The ghost propagator is not enhanced and the gluon propagator is positivity violating, infrared suppressedand
non-vanishing at zero momentum. From an analytical point ofview, several groups are agreeing with these results. Among
them, the refined Gribov-Zwanziger (RGZ) framework also accommodates for these results. The question which rises next
is, if our models hold the right form for the propagators, howto extract information on the real physical observables, i.e. the
glueballs? How do the operators which represent glueballs look like? We review the current status of this matter within the
RGZ framework.
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INTRODUCTION ON THE GZ
FORMALISM

As is well known, the Yang-Mills action needs to be
gauge fixed in order to define the path integral. One way
to do this is trough the gauge fixing proposed by Faddeev
and Popov. However, as is shown by Gribov, this gauge
fixing suffers from Gribov copies [1]. If we take e.g. the
Landau gauge,∂µAµ = 0, it is very easy to show that
there exist gauge equivalent fieldsA′

µ also fulfilling the
Landau gauge∂µA′

µ when having zero modes of the
Faddeev-Popov operator

M
ab = −∂µDµ =−∂µ(∂µ δ ab−g fabcAc

µ) .

Therefore, Gribov proposed to restrict the region of inte-
gration toΩ

Ω =
{

Aµ |∂µAµ = 0,M > 0)
}
,

the region which is free of zero modes of the Faddeev-
Popov operatorM ab. We should mention however, that
there are still Gribov copies inside the Gribov region
[2]. In 1989, Zwanziger implemented this restriction to
the Gribov region to all orders: the Gribov-Zwanziger
action was born [3]. Let us here immediately present the
localized version of this action, namely

SGZ = SFP+S0+Sγ ,

with SFP the usual Faddeev-Popov action,

SFP=
1
4

∫

d4Fa
µνFa

µν +

∫

d4x
(

ba∂µ Aa
µ + ca∂µDab

µ cb
)

,

(1)
andS0 andSγ given by

S0 =
∫

d4x
(

ϕac
µ M

abϕbc
µ −ωac

µ M
abωbc

µ

)

,

Sγ =−γ2g
∫

d4x

(

f abc(ϕbc
µ +ϕbc

µ )Aa
µ +

d
g

(
N2−1

)
γ2
)

.

The fields (ϕac
µ ,ϕac

µ ) are a pair of complex conju-
gate bosonic fields, while(ωac

µ ,ωac
µ ) are anticommuting

fields. γ is not free, but fixed by a horizon condition,
〈
g fckaAk

µ(ϕac
µ + ϕ̄ac

µ )
〉
= 2γ24(N2 − 1). Looking at this

horizon condition, we see that it is equivalent with a di-
mension two condensate. Therefore, we could investigate
other dimension two condensates, namely〈ϕϕ −ωω〉
and 〈A2〉. Including these condensates gives rise to the
refined GZ (RGZ) action [4]. We have shown that this
can be done in a renormalizable way. We stress that the
masses related to the condensates respectivelyM2 and
m2 are dynamically generated.

PROPAGATORS

Let us now look at the ghost and the gluon propaga-
tor. Firstly, it is sure that perturbation theory fails in the
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infrared region as perturbatively, the gluon propagator
blows up, while all lattice calculations show that there
is infrared suppression. Secondly, the Gribov-Zwanziger
predicts a gluon propagator which is infrared suppressed,
and therefore clearly goes beyond perturbation theory.
Unfortunately, at zero momentum, this gluon propagator
vanishes, which contradicts the current numerical simu-
lations that this propagator is non-vanishing at zero mo-
mentum [5, 6]. In addition, the ghost propagator shows
infrared enhancement, which is also no longer observed
in the infrared. Therefore, something is still missing in
the GZ framework. Thirdly, let us investigate the refined
GZ action. In this case, the tree level gluon propagator
behaves like

D(p2) =
p2+M2

p4+(M2+m2) p2+2g2Nγ4+M2m2 . (2)

This propagator is clearly infrared suppressed, also vio-
lating positivity and is no longer zero at zero momentum.
Also the ghost propagator is no longer enhanced as an
effect of the condensates. This agrees again qualitatively
with the latest lattice results.
In [7], we have investigated our specific form of the
gluon propagator on the lattice. Two main conclusions
could be drawn: 1) Ifm2 = 0, the fits are of low qual-
ity, therefore, the condensate〈A2〉 ∼m2 is indispensable;
2) Nice fits for the form (2) were found when includ-
ing the condensate

〈
A2

〉
. Let us recall some estimates:

M2 = 2.14± 0.13GeV2, m2 = −1.78± 0.14 GeV2 and
D(0) = 8.2±0.5 GeV2. From the estimate ofm2, we find
that〈g2A2〉µ=10GeV≈ 3GeV2 which is in the same ball-
park as other, rather independent, approaches [8, 9].
In conclusion, we could state that the RGZ framework
provides a possible explanation of the behavior of the
gluon and the ghost propagator. In fact, one can show that
more condensates can be present, and alternative RGZ
frameworks exist [10, 11].
Let us also stress that in 2d, the ghost propagator is still
enhanced, while the gluon propagator is zero at zero mo-
mentum, [12]. We have also provided evidence that in
2d, the GZ formalism still holds the right results as re-
finement is impossible in 2d [13].

THE QUEST FOR PHYSICAL
OPERATORS

Now that the propagators match with the lattice, we can
wonder whether the RGZ also holds information about
the particles of (quenched) QCD? The idea to proceed
is the following: we want to find an operatorO, so that
the correlator〈O(k)O(−k)〉 can be put into a spectral

representation:

〈O(k)O(−k)〉=
∫ ∞

τ0

dτ ρ(τ)
1

τ + k2 .

We then introduceF(z) =
∫ ∞

τ0
dτ ρ(τ) 1

τ+z so that when

going to Minkowski space, i.e.k2
Eucl → −k2

Mink, we find
a discontinuity along the positive real axis. In addition
we wantρ(τ) to be positive forτ ≥ τ0 in order to give
a particle interpretation to the correlator1 and obviously
O(k) has to be renormalizable.
We have worked out two different angles to attack this
problem. In the first approach, we have introducedi-
particles [14]

λ a
µ =

1√
2

Aa
µ +

i

2
√

N
f abc

(

ϕbc
µ +ϕbc

µ

)

,

ηa
µ =

1√
2

Aa
µ − i

2
√

N
f abc

(

ϕbc
µ +ϕbc

µ

)

,

to make the quadratic part of the action diagonal. With
the i-field strengths,λ a

µν = ∂µλ a
ν − ∂ν λ a

µ and ηa
µν =

∂µηa
ν − ∂νηa

µ , we have proposed the following operator

O(1) =
(
λ a

µν(x)η
a
µν (x)

)
.

The corresponding correlator〈O(1)(k)O(1)(−k)〉 can be
put in a spectral representation:

〈O(1)(k)O(1)(−k)〉=
∫ ∞

2λ 2
dτρ(τ)

1
τ + k2 ,

wherebyρ(τ) ≥ 0. Unfortunately, the operatorO(1) is
not renormalizable.
Let us therefore also discuss the second angle. In [15],
we have investigated the renormalization of the typical
scalar glueball operatorF2 with the GZ action. Let us
start by noting that the Faddeev-Popov actionSFP is
invariant under the BRST transformations: sSFP= 0,

sAa
µ =−

(
Dµc

)a
, sca =

1
2

g fabccbcc ,

sca = ba , sba = 0 .

This BRST invariance lies at the origin of the Slavnov-
Taylor identity, which allows us to prove the renormal-
izability. Moreover, the BRST charge allows us to define
the sub-space of the physical states and to establish the
unitarity of theS matrix. Unfortunately, the GZ action
is no longer invariant under the BRST transformations.
The new fields transform as

sϕa
i = ωa

i , sωa
i = 0 , sωa

i = ϕa
i , sϕa

i = 0 , (3)

1 ρ is proportional to the cross section, and thus has to be positive.



and thus the breaking is proportional toγ, sSGZ =
s
(
SYM +Sg f +S0+Sγ

)
= s

(
Sγ
)
∼ γ2 6= 0. Despite this

breaking, the GZ action is still renormalizable, due to
a rich set of Ward identities. Moreover, only two renor-
malization constants are needed, which is the same as in
the Yang-Mills theory. Let us also mention that by in-
troducing extra fields, a symmetry can be restored again
[16]. With the breaking in mind, we can renormalizeF2

within the GZ framework as done in [15]. This renormal-
ization is however far from trivial due to the breaking of
the BRST symmetry. We find thatF2 mixes with the fol-
lowing operator:

E = s(. . .)+ γ2Dab
µ

(

ϕba
µ +ϕba

µ

)

+d(N2−1)γ . (4)

Moreover, we have constructed a renormalization group
invariant given by

O(2) =
β (g2)

g2 F2−2γcE . (5)

Therefore, we would propose the following correlator
〈

O(2)(x)O(2)(y)
〉

=
〈[

β
g2F2−2γcE

]

(x)

[
β
g2F2−2γcE

]

(y)

〉

6=
(

β
g2

)2
〈
F2(x)F2(y)

〉
. (6)

Notice that the breaking of the BRST symmetry is the
reason that this correlator contains extra terms beside
〈
F2(x)F2(y)

〉
. In ordinary Yang-Mills theory, a similar

correlator can be found, but it reduces the〈F2(x)F2(y)〉
due to the presence of the BRST symmetry. Unfortu-
nately, with this correlator, we are unable to find a good
spectral representation. This was already found in [3]:
∫

d4x e−ikx 〈
F2(x)F2(0)

〉
= Gphys(k2)+Gunphys(k2) ,

whereby the unphysical part,Gunphys(k2), displays cuts
along the imaginary axes beginning at the unphysical
valuesk2 = ±4iγ2 and the physical part,Gphys(k2), has
a cut beginning at the physical thresholdk2 =−2γ2.

For further clarification, let us show the relation be-
tweenO(1) andO(2). At lowest order, we have that

F2
µν

︸︷︷︸

O(2)

= λ a
µνηa

µν
︸ ︷︷ ︸

O(1)

+1/2λ a
µνλ a

µν +1/2ηa
µνηa

µν ,

and thus it are in fact the two last terms which cause
the bad spectral representation in〈F2(x)F2(y)〉, and the
question remains how we can find a renormalizable op-
erator with a good spectral representation.

We can already mention that so far, we have only investi-
gated spectral representations within the GZ framework.
The hope is that within the RGZ framework, we can still
find an operator with the required properties as some as-
pects change of the analysis. Also, the study of glueballs
looks very promising within the (R)GZ framework, see,
for example, the recent results in [17]. This question of
finding descent operators is not only relevant within the
Gribov-Zwanziger context, but for all people involved in
infrared propagators QCD. How to find good spectral op-
erators starting from unphysical operators?
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