19 research outputs found

    Swift/X-ray Telescope monitoring of the candidate supergiant fast X-ray transient IGR J16418-4532

    Full text link
    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418−4532, for which both orbital and spin periods are known (∼3.7 d and ∼1250 s, respectively). Our observations, for a total of ∼43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from ∼5 × 10[superscript: 16] to 10[superscript: 21] g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

    Jet breaks and energetics of swift gamma-ray burst X-ray afterglows

    Full text link
    We present a systematic temporal and spectral study of all Swift-X-ray Telescope observations of gamma-ray burst (GRB) afterglows discovered between 2005 January and 2007 December. After constructing and fitting all light curves and spectra to power-law models, we classify the components of each afterglow in terms of the canonical X-ray afterglow and test them against the closure relations of the forward shock models for a variety of parameter combinations. The closure relations are used to identify potential jet breaks with characteristics including the uniform jet model with and without lateral spreading and energy injection, and a power-law structured jet model, all with a range of parameters. With this technique, we survey the X-ray afterglows with strong evidence for jet breaks (~12% of our sample), and reveal cases of potential jet breaks that do not appear plainly from the light curve alone (another ~30%), leading to insight into the missing jet break problem. Those X-ray light curves that do not show breaks or have breaks that are not consistent with one of the jet models are explored to place limits on the times of unseen jet breaks. The distribution of jet break times ranges from a few hours to a few weeks with a median of ~1 day, similar to what was found pre-Swift. On average, Swift GRBs have lower isotropic equivalent γ-ray energies, which in turn result in lower collimation corrected γ-ray energies than those of pre-Swift GRBs. Finally, we explore the implications for GRB jet geometry and energetics

    Confirmation of the supergiant fast X-ray transient nature of AX J1841.0-0536 from Swift outburst observations

    Full text link
    Swift observed an outburst from the supergiant fast X-ray transient (SFXT) AX J1841.0−0536 on 2010 June 5, and followed it with X-ray Telescope (XRT) for 11 d. The X-ray light curve shows an initial flare followed by a decay and subsequent increase, as often seen in other SFXTs, and a dynamical range of ∼1600. Our observations allow us to analyse the simultaneous broad-band (0.3–100 keV) spectrum of this source, for the first time down to 0.3 keV, which can be fitted well with models usually adopted to describe the emission from accreting neutron stars in high-mass X-ray binaries, and is characterized by a high absorption (NH∼ 2 × 1022 cm−2), a flat power law (Γ∼ 0.2) and a high-energy cut-off. All of these properties resemble those of the prototype of the class, IGR J17544−2619, which underwent an outburst on 2010 March 4, whose observations we also discuss. We show how well AX J1841.0−0536 fits in the SFXT class, based on its observed properties during the 2010 outburst, its large dynamical range in X-ray luminosity, the similarity of the light curve (length and shape) to those of the other SFXTs observed by Swift and the X-ray broad-band spectral properties

    The Swift Burst Analyser I. BAT and XRT spectral and flux evolution of gamma ray bursts

    Full text link
    Context: Gamma ray burst models predict the broadband spectral evolution and the temporal evolution of the energy flux. In contrast, standard data analysis tools and data repositories provide count-rate data, or use single flux conversion factors for all of the data, neglecting spectral evolution. Aims: We produce Swift BAT and XRT light curves in flux units, where the spectral evolution is accounted for. Methods: We have developed software to use the hardness ratio information to track spectral evolution of GRBs, and thus to convert the count-rate light curves from the BAT and XRT instruments on Swift into accurate, evolution-aware flux light curves. Results: The Swift Burst Analyser website (http://www.swift.ac.uk/burst_analyser) contains BAT, XRT and combined BAT-XRT flux light curves in three energy regimes for all GRBs observed by the Swift satellite. These light curves are automatically built and updated when data become available, are presented in graphical and plain-text format, and are available for download and use in research

    An online repository of Swift/XRT light curves of Γ-ray bursts

    Full text link
    Context.Swift data are revolutionising our understanding of Gamma Ray Bursts. Since bursts fade rapidly, it is desirable to create and disseminate accurate light curves rapidly. Aims.To provide the community with an online repository of X-ray light curves obtained with Swift. The light curves should be of the quality expected of published data, but automatically created and updated so as to be self-consistent and rapidly available. Methods.We have produced a suite of programs which automatically generates Swift/XRT light curves of GRBs. Effects of the damage to the CCD, automatic readout-mode switching and pile-up are appropriately handled, and the data are binned with variable bin durations, as necessary for a fading source. Results.The light curve repository website (http://www.swift.ac.uk/xrt_curves) contains light curves, hardness ratios and deep images for every GRB which Swift's XRT has observed. When new GRBs are detected, light curves are created and updated within minutes of the data arriving at the UK Swift Science Data Centre

    Multiple flaring activity in the supergiant fast X-ray transient IGR J08408-4503 observed with Swift

    Full text link
    IGR J08408−4503 is a supergiant fast X–ray transient discovered in 2006 with a confirmed association with a O8.5Ib(f) supergiant star, HD 74194. We report on the analysis of two outbursts caught by Swift/Burst Alert Telescope (BAT) on 2006 October 4 and 2008 July 5, and followed up at softer energies with Swift/X-ray Telescope (XRT). The 2008 XRT light curve shows a multiple-peaked structure with an initial bright flare that reached a flux of ∼10[superscript: −9] erg cm[superscript: -2] s[superscript: −1] (2–10 keV), followed by two equally bright flares within 75 ks. The spectral characteristics of the flares differ dramatically, with most of the difference, as derived via time-resolved spectroscopy, being due to absorbing column variations. We observe a gradual decrease in the N[subscript: H], derived with a fit using absorbed power-law model, as time passes. We interpret these N[subscript: H] variations as due to an ionization effect produced by the first flare, resulting in a significant decrease in the measured column density towards the source. The durations of the flares as well as the times of the outbursts suggest that the orbital period is ∼35 d, if the flaring activity is interpreted within the framework of the Sidoli et al. model with the outbursts triggered by the neutron star passage inside an equatorial wind inclined with respect to the orbital plane

    The Swift gamma-ray burst GRB 050422

    Full text link
    We describe observations of GRB 050422, a Swift-discovered gamma-ray burst. The prompt gamma-ray emission had a T90 duration of 59 s and was multipeaked, with the main peak occurring at T+ 53 s. Swift was able to follow the X-ray afterglow within 100 s of the burst trigger. The X-ray light curve, which shows a steep early decline, can be described by a broken power law with an initial decay slope of α1∼ 5.0, a break time tb∼ 270 s and a post-break decay slope of α2∼ 0.9, when the zero time of the X-ray emission is taken to be the burst trigger time. However, if the zero time is shifted to coincide with the onset of main peak in the gamma-ray light curve then the initial decay slope is shallower with α1∼ 3.2. The initial gamma-ray spectrum can be modelled by a power law with a spectral index of βB= 0.50 ± 0.19. However, the early time X-ray spectrum is significantly steeper than this and requires a spectral index of βX= 2.33+0.58−0.55. In comparison with other Swift bursts, GRB 050422 was unusually X-ray faint, had a soft X-ray spectrum, and had an unusually steep early X-ray decline. Even so, its behaviour can be accommodated by standard models. The combined BAT/XRT light curve indicates that the initial, steeply declining, X-ray emission is related to the tail of the prompt gamma-ray emission. The shallower decay seen after the break is consistent with the standard afterglow model

    The late peaking afterglow of GRB 100418A

    Full text link
    GRB 100418A is a long gamma-ray burst (GRB) at redshift z = 0.6235 discovered with the Swift Gamma-ray Burst Explorer with unusual optical and X-ray light curves. After an initial short-lived, rapid decline in X-rays, the optical and X-ray light curves observed with Swift are approximately flat or rising slightly out to at least ~7 × 10[superscript: 3] s after the trigger, peak at ~5 × 10[superscript: 4] s, and then follow an approximately power-law decay. Such a long optical plateau and late peaking is rarely seen in GRB afterglows. Observations with Rapid Eye Mount during a gap in the Swift coverage indicate a bright optical flare at ~2.5 × 10[superscript: 4] s. The long plateau phase of the afterglow is interpreted using either a model with continuous injection of energy into the forward shock of the burst or a model in which the jet of the burst is viewed off-axis. In both models the isotropic kinetic energy in the late afterglow after the plateau phase is ≥10[superscript: 2] times the 10[superscript: 51] erg of the prompt isotropic gamma-ray energy release. The energy injection model is favored because the off-axis jet model would require the intrinsic T [subscript: 90] for the GRB jet viewed on-axis to be very short, ~10 ms, and the intrinsic isotropic gamma-ray energy release and the true jet energy to be much higher than the typical values of known short GRBs. The non-detection of a jet break up to t ~ 2 × 10[superscript: 6] s indicates a jet half-opening angle of at least ~14°, and a relatively high-collimation-corrected jet energy of E [subscript: jet] ≥ 10[superscript: 52] erg

    Swift follow-up of gravitational wave triggers: Results from the first aLIGO run and optimization for the future

    Get PDF
    During its first observing run, in late 2015, the advanced Laser Interferometer Gravitationalwave Observatory facility announced three gravitational wave (GW) triggers to electromagnetic follow-up partners. Two of these have since been confirmed as being of astrophysical origin: both are binary black hole mergers at ~500 Mpc; the other trigger was later found not to be astrophysical. In this paper, we report on the Swift follow-up observations of the second and third triggers, including details of 21 X-ray sources detected; none of which can be associated with the GW event. We also consider the challenges that the next GW observing run will bring as the sensitivity and hence typical distance of GW events will increase. We discuss how to effectively use galaxy catalogues to prioritize areas for follow-up, especially in the presence of distance estimates from the GW data. We also consider two galaxy catalogues and suggest that the high completeness at larger distances of the 2MASS Photometric Redshift catalogue makes it very well suited to optimize Swift follow-up observations
    corecore