466 research outputs found

    Simulating the opto-thermal processes involved in laser induced self-assembly of surface and sub-surface plasmonic nano-structuring

    Get PDF
    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technology calls for the development of ultra-fast, high-throughput and low cost fabrication techniques. Laser processing accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nano-structures, with an extra advantage: the ease of scalability. Specifically, laser nano-structuring of an ultra-thin metal film or an alternating metal film on a substrate/metal film on a substrate results respectively on surface (metallic nanoparticles on the surface of the substrate) or subsurface (metallic nanoparticles embedded in a dielectric matrix) plasmonic patterns with many applications. In this work we investigate theoretically the photo-thermal processes involved in surface and sub-surface plasmonic nano-structuring and compare to experiments. To this end, we present a design process and develop functional plasmonic nano-structures with pre-determined morphology by tuning the annealing parameters like the laser fluence and wavelength and/or the structure parameters like the thickness of the metallic film and the volume ratio of the metal film on a substrate-metal composite. For the surface plasmonic nano-structuring we utilize the ability to tune the laser's wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, i.e. we utilize different optical absorption mechanisms that are size-selective. Thus, we overcome a great challenge of laser induced self assembly by combining simultaneously large-scale character with nanometer scale precision. For subsurface plasmonic nano-structuring, on the other hand, we utilize the temperature gradients that are developed spatially across the metal/dielectric nano-composite structure during the laser treatment. We find that the developed temperature gradients are strongly depended on the nanocrystalline character of the dielectric host which determines its thermal conductivity, the composition of the ceramic/metal and the total thickness of the nano-composite film. The aforementioned material parameters combined with the laser annealing parameters can be used to pre-design the final morphology of the sub-surface plasmonic structure. The proposed processes can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices

    Sub-surface laser nanostructuring in stratified metal/dielectric media: a versatile platform towards flexible, durable and large-scale plasmonic writing

    Get PDF
    Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications. Keywords : Ceramic materials; Composite films; Environmental technology; Film growth; Film preparation; Multilayer films; Multilayers; Nanocrystals; Optical data processing; Plasmons; Silver; Substrates; Surface plasmon resonance; Thin films; Ultrathin films, Laser annealing; Localised surface plasmon resonance; Multi-layer thin film; Nano-structuring; Plasmonics, Nanocomposite film

    Comparative performance of selected variability detection techniques in photometric time series

    Full text link
    Photometric measurements are prone to systematic errors presenting a challenge to low-amplitude variability detection. In search for a general-purpose variability detection technique able to recover a broad range of variability types including currently unknown ones, we test 18 statistical characteristics quantifying scatter and/or correlation between brightness measurements. We compare their performance in identifying variable objects in seven time series data sets obtained with telescopes ranging in size from a telephoto lens to 1m-class and probing variability on time-scales from minutes to decades. The test data sets together include lightcurves of 127539 objects, among them 1251 variable stars of various types and represent a range of observing conditions often found in ground-based variability surveys. The real data are complemented by simulations. We propose a combination of two indices that together recover a broad range of variability types from photometric data characterized by a wide variety of sampling patterns, photometric accuracies, and percentages of outlier measurements. The first index is the interquartile range (IQR) of magnitude measurements, sensitive to variability irrespective of a time-scale and resistant to outliers. It can be complemented by the ratio of the lightcurve variance to the mean square successive difference, 1/h, which is efficient in detecting variability on time-scales longer than the typical time interval between observations. Variable objects have larger 1/h and/or IQR values than non-variable objects of similar brightness. Another approach to variability detection is to combine many variability indices using principal component analysis. We present 124 previously unknown variable stars found in the test data.Comment: 29 pages, 8 figures, 7 tables; accepted to MNRAS; for additional plots, see http://scan.sai.msu.ru/~kirx/var_idx_paper

    Arthroscopic rotator cuff repair with a fibrin scaffold containing growth factors and autologous progenitor cells derived from humeral cBMA improves clinical outcomes in high risk patients

    Get PDF
    PURPOSE: To report the clinical outcomes after biologically augmented rotator cuff repair (RCR) with a fibrin scaffold derived from autologous whole blood and supplemented with concentrated bone marrow aspirate (cBMA) harvested at the proximal humerus. METHODS: Patients who underwent arthroscopic RCR with biologic augmentation using a fibrin clot scaffold (“Mega- Clot”) containing progenitor cells and growth factors from proximal humerus BMA and autologous whole blood between April 2015 and January 2018 were prospectively followed. Only high-risk patients in primary and revision cases that possessed relevant comorbidities or physically demanding occupation were included. Minimum follow-up for inclusion was 1 year. The visual analog score for pain (VAS), American Shoulder and Elbow Surgeons (ASES), Simple Shoulder Test (SST), Single Assessment Numerical Evaluation (SANE), and Constant-Murley scores were collected preoperatively and at final follow-up. In vitro analyses of the cBMA and fibrin clot using nucleated cell count, colony forming units, and live/dead assays were used to quantify the substrates. RESULTS: Thirteen patients (56.9 ± 7.7 years) were included. The mean follow-up was 26.9 ± 17.7 months (n = 13). There were significant improvements in all outcome scores from the preoperative to the postoperative state: VAS (5.6 ± 2.5 to 3.1 ± 3.2; P < .001), ASES (42.0 ± 17.1 to 65.5 ± 30.6; P < .001), SST (3.2 ± 2.8 to 6.5 ± 4.7; P = .002), SANE (11.5 ± 15.6 to 50.3 ± 36.5; P < .001), and Constant-Murley (38.9 ± 17.5 to 58.1 ± 26.3; P < .001). Six patients (46%) had retears on postoperative MRI, despite all having improvements in pain and function except one. All failures were chronic rotator cuff tears, and all were revision cases except one (1.6 ± 0.5 previous RCRs). The representative sample of harvested cBMA showed an average of 28.5 ± 9.1 × 10(6) nucleated cells per mL. CONCLUSIONS: Arthroscopic rotator cuff repairs that are biologically augmented with a fibrin scaffold containing growth factors and autologous progenitor cells derived from autologous whole blood and humeral cBMA can improve clinical outcomes in primary, as well as revision cases in high-risk patients. However, the incidence of retears remains a concern in this population, demanding further improvements in biologic augmentation. LEVEL OF EVIDENCE: IV, therapeutic case series

    Near-zero negative real permittivity in far ultraviolet: extending plasmonics and photonics with B1-MoNx

    Get PDF
    CMOS-compatible, refractory conductors are emerging as the materials that will advance novel concepts into real, practical plasmonic technologies. From the available pallet of materials, those with negative real permittivity at very short wavelengths are extremely rare; importantly, they are vulnerable to oxidation—upon exposure to far-UV radiation—and nonrefractory. Epitaxial, substoichiometric, cubic MoN (B1-MoNx) films exhibit resistivity as low as 250 μΩ cm and negative real permittivity for experimental wavelengths as short as 155 nm, accompanied with unparalleled chemical and thermal stabilities, which are reported herein. Finite-difference time domain calculations suggest that B1-MoNx operates as an active plasmonic element deeper in the UV (100–200 nm) than any other known material, apart from Al, while being by far more stable and abundant than any other UV plasmonic conductor. Unexpectedly, the unique optical performance of B1-MoNx is promoted by nitrogen vacancies, thus changing the common perception on the role of defects in plasmonic materials

    Learning robotics: a review

    Get PDF
    Purpose of Review: With the growing interest for STEM/STEAM, new robotic platforms are being created with different characteristics, extras and options. There are so many diverse solutions, that it is difficult for a teacher/student to choose the ideal one. This paper intends to provide an analysis to the most common robotic platforms existent on the market. The same is happening regarding robotic events all around the world, with objectives so distinctive, and with complexity from easy to very difficult. This paper also describes some of those events which occur in many countries. Recent Findings: As the literature is showing, there has been a visible effort from schools and educators to teach robotics from very young ages, not only because robotics is the future, but also as a tool to teach STEM/STEAM areas. But as time progresses, the options for the right platforms also evolves making difficult to choose among them. Some authors opt to first choose a robotic platform and carry on from there. Others choose first a development environment and then look for which robots can be programmed from it. Summary: An actual review on learning robotics is here presented, firstly showing some literature background on history and trends of robotic platforms used in education in general, the different development environments for robotics and finishing on competitions and events. A comprehensive characterization list of robotic platforms along with robotic competitions and events is also shown

    Significant Improvement in Shoulder Function and Pain in Patients Following Biologic Augmentation of Revision Arthroscopic Rotator Cuff Repair Using an Autologous Fibrin Scaffold and Bone Marrow Aspirate Derived From the Proximal Humerus

    Get PDF
    Purpose To clinically evaluate patients who underwent a biologic augmentation technique in revision arthroscopic rotator cuff repair using an autologous fibrin scaffold and concentrated stem cells isolated from bone marrow aspirate (BMA) obtained from the proximal humerus. Methods This is a retrospective review of prospectively collected data from patients who underwent biologic augmentation of revision arthroscopic rotator cuff repair using an autologous fibrin scaffold and BMA obtained from the proximal humerus between 2014 and 2015. Minimum follow-up was 12 months. Outcome measures were collected preoperatively and postoperatively including range of motion as well as American Shoulder and Elbow Surgeons Shoulder Form, Simple Shoulder Test, single assessment numeric evaluation, and visual analog score. In addition, BMA samples of each patient were assessed for the number of nucleated cells and colony-forming units. Regression analysis was performed to investigate whether the number of nucleated cells and colony-forming units had an influence on outcome and failure. Results Ten patients who underwent biologic augmentation of revision arthroscopic rotator cuff repair using an autologous fibrin scaffold and concentrated BMA obtained from the proximal humerus between 2014 and 2015 were included. The mean follow-up time was 30.7 (range: 12-49) months. Four patients were revised at final follow-up. Postoperative clinical scores improved significantly: American Shoulder and Elbow Surgeons (28.1 ± 5.4 to 60.9 ± 9.0; P < .01), single assessment numeric evaluation (6.6 ± 2.3 to 65.1 ± 10.9; P < .01), visual analog scale (7.2 ± 0.9 to 3.1 ± 0.9; P < .01), and Simple Shoulder Test (1.6 ± 0.5 to 10.3 ± 5.7; P < .01). Postoperative range of motion increased significantly with regard to flexion (97.0 ± 13.6 to 151.0 ± 12.2; P < .01) and abduction (88.0 ± 14.0 to 134.0 ± 15.1; P = .038) but not with external rotation (38.0 ± 5.7 to 50.5 ± 6.5; P = .16). Less pain was correlated to an increased number of nucleated cells (P = .026); however, there was no correlation between failure rate and number of nucleated cells (P = .430). Conclusions Patients who underwent biologic augmentation of revision arthroscopic rotator cuff repair using an autologous fibrin scaffold and concentrated BMA demonstrated a significant improvement in shoulder function along with reduction of pain. However, the overall revision rate for this procedure was 40%. Level of Evidence Level IV, therapeutic case series
    corecore