835 research outputs found

    Family C1 cysteine proteases: Biological diversity or redundancy?

    Get PDF
    Recent progress in the identification and partial characterization of novel genes encoding cysteine proteases of the papain family has considerably increased our knowledge of this family of enzymes. Kinetic data available to date for this large family indicate relatively broad, overlapping specificities for most enzymes, thus inspiring a growing conviction that they may exhibit functional redundancy. This is also supported in part by phenotypes of cathepsin knockout mice and suggests that several proteases can substitute for each other to degrade or process a given substrate. On the other hand, specific functions of one particular protease have also been documented. In addition, differences in cellular distribution and intracellular localization may contribute to defining specific functional roles for some of these proteases

    A plea for extension of the anatomical nomenclature. Part 1: Nervous system and senses

    Get PDF
    A correct, exact, concise and detailed anatomical nomenclature is a cornerstone of communication not only in anatomy and related subjects but also in other medical branches and in the whole medical education. Terminologia Anatomica fulfils this task but some important structures are still missing there. The authors have collected and present here a list of terms including their definitions or explanations to provoke discussion about possible extension of the Terminologia Anatomica. The first part of this contribution, presented in this article, comprises 113 terms concerning the regulation systems of the human body: endocrine glands, central and peripheral nervous system, and senses. It also contains some corrections of anatomical mistakes, systemic inconsistencies and grammar changes

    Phytochemistry Predicts Habitat Selection by an Avian Herbivore at Multiple Spatial Scales

    Get PDF
    Animal habitat selection is a process that functions at multiple, hierarchically structured spatial scales. Thus multi-scale analyses should be the basis for inferences about factors driving the habitat selection process. Vertebrate herbivores forage selectively on the basis of phytochemistry, but few studies have investigated the influence of selective foraging (i.e., fine-scale habitat selection) on habitat selection at larger scales. We tested the hypothesis that phytochemistry is integral to the habitat selection process for vertebrate herbivores. We predicted that habitats selected at three spatial scales would be characterized by higher nutrient concentrations and lower concentrations of plant secondary metabolites (PSMs) than unused habitats. We used the Greater Sage-Grouse (Centrocercus urophasianus), an avian herbivore with a seasonally specialized diet of sagebrush, to test our hypothesis. Sage-Grouse selected a habitat type (black sagebrush, Artemisia nova) with lower PSM concentrations than the alternative (Wyoming big sagebrush, A. tridentata wyomingensis). Within black sagebrush habitat, Sage-Grouse selected patches and individual plants within those patches that were higher in nutrient concentrations and lower in PSM concentrations than those not used. Our results provide the first evidence for multi-scale habitat selection by an avian herbivore on the basis of phytochemistry, and they suggest that phytochemistry may be a fundamental driver of habitat selection for vertebrate herbivores

    High-rate low-temperature dc pulsed magnetron sputtering of photocatalytic TiO2films: the effect of repetition frequency

    Get PDF
    The article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2thin films using dc dual magnetron (DM) sputtering in Ar + O2mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5) targets of 50 mm in diameter. The substrate surface temperature Tsurfmeasured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency frwas investigated in detail. It was found that the increase of frfrom 100 to 350 kHz leads to (a) an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aDof sputtered TiO2films and (b) a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2film deposited on a polycarbonate substrate are given

    An important Norwegian contribution to the study of the bursae of the upper and lower extremities

    Get PDF
    We present a critical analysis of the monograph of A.S.D. Synnestvedt (1869) “En anatomisk beskrivelse af de paa over- og underestremiteterne forekommende Bursae mucosae”. The analysis was completed using anatomical information from the historically oldest publications dealing with the bursae of the extremities: Albinus (1734), Monro (1788), Rosenmüller (1799). We are of the opinion that Synnestvedt's publication is important, not only historically but also as a source of information for recent medical practitioners. Synnestvedt's monograph has a wealth of literary citations, unambiguous opinions of seasoned anatomists regarding the structure and function of the synovial membrane, and detailed descriptions of dissections he performed on fetal and adult cadavers. The information in this publication may enhance the diagnosis of bursopathies and enthesopathies of the extremities

    Sage‐Grouse Breeding and Late Brood‐Rearing Habitat Guidelines in Utah

    Get PDF
    Delineation, protection, and restoration of habitats provide the basis for endangered and threatened species recovery plans. Species recovery plans typically contain guidelines that provide managers with a scientific basis to designate and manage critical habitats. As such, habitat guidelines are best developed using data that capture the full diversity of ecological and environmental conditions that provide habitat across the species’ range. However, when baseline information, which fails to capture habitat diversity, is used to develop guidelines, inconsistencies and problems arise when applying those guidelines to habitats within an ecologically diverse landscape. Greater sage‐grouse (Centrocercus urophasianus; sage‐ grouse) populations in Utah, USA, reflect this scenario—published range‐wide habitat guidelines developed through a literature synthesis did not include data from the full range of the species. Although all sage‐ grouse are considered sagebrush obligates (Artemisia spp.), the species occupies a diversity of sagebrush communities from shrub‐dominated semideserts in the southwest to more perennial grass‐dominated sagebrush‐steppe in the northeast portions of their distribution. Concomitantly, local ecological site and environmental conditions may limit the ability of managers to achieve broader range‐wide habitat guidelines. We combined microsite habitat vegetation parameters from radiomarked sage‐grouse nest and brood locations with state‐wide spatially continuous vegetation, climatic, and elevation data in a cluster analysis to develop empirically based sage‐grouse habitat guidelines that encompass the range of ecological and environmental variation across Utah. Using this novel approach, we identified 3 distinct clusters of sage‐grouse breeding (i.e., nesting and early brood‐rearing) and late brood‐rearing habitats in Utah. For each cluster, we identified specific vegetation recommendations that managers can use to assess sage‐grouse breeding and late brood‐rearing habitat. Our results provide relevant guidelines to Utah’s sage‐grouse populations and are feasible given the unique ecological variation found therein. This approach may have application to other species that occupy diverse habitats and physiographic regions

    Atomic-scale representation and statistical learning of tensorial properties

    Full text link
    This chapter discusses the importance of incorporating three-dimensional symmetries in the context of statistical learning models geared towards the interpolation of the tensorial properties of atomic-scale structures. We focus on Gaussian process regression, and in particular on the construction of structural representations, and the associated kernel functions, that are endowed with the geometric covariance properties compatible with those of the learning targets. We summarize the general formulation of such a symmetry-adapted Gaussian process regression model, and how it can be implemented based on a scheme that generalizes the popular smooth overlap of atomic positions representation. We give examples of the performance of this framework when learning the polarizability and the ground-state electron density of a molecule

    Focused Ion Beam Fabrication

    Get PDF
    Contains reports on five research projects.DARPA/Naval Electronic Systems Command (Contract MDA-903-85-C-0215)Charles Stark Draper Laboratory (Contract DL-H-261827)U.S. Navy - Office of Naval Research (Contract N00014-84-K-0073)Nippon Telephone and TelegraphHitachi Central Research Laborator

    Blob properties in full-turbulence simulations of the TCV scrape-off layer

    Get PDF
    To investigate blob properties in the tokamak scrape-off layer (SOL), we perform dedicated numerical nonlinear simulations of plasma turbulence in the SOL of a TCV discharge using the Global Braginskii Solver code. A blob detection technique is used for the first time in a three-dimensional (3D) full-turbulence simulation to track the motion of the filaments in the SOL. The specific size, density amplitude and radial velocity of the blobs are computed, with the typical values being 7.4 rho(s), 0.33 n(e) and 0.016 c(s), respectively. The analysis of blob structure in the parallel direction shows that the blobs are partially detached from the limiter. The cross correlation analysis shows how the blobs are born all along the entire field line, not being generated primarily on the low field side SOL and expanding towards the limiter. The blob radial velocity agrees well with the inertial branch of the existing scaling law. The radial particle and heat fluxes given by blobs are shown to be responsible of up to 100% and 70% of the turbulent particle and heat flux in the far SOL, respectively. The results of a second simulation with a 40 times higher resistivity are also discussed

    Focused Ion Beam Fabrication

    Get PDF
    Contains reports on four sections of one research project.Microsystems Technology LaboratoriesDefense Advanced Research Projects Agency/Naval Electronics Systems Command (Contract MDA 903-85-C-0215)U.S. Air Force (through Lincoln Laboratory)Defense Advanced Research Projects Agency (through Lincoln Laboratory)Charles Stark Draper Laboratory, Inc. (Contract DL-H-261827)Hitachi Central Research LaboratoryNippon Telegraph & TelephoneU.S. Army Research Office (Contract DAALO3-87-K-0126
    corecore