121 research outputs found
Prosthetic Knee for CURE Kenya: Design and Manufacturing
The Prosthetic Knee team is partnered with the CURE International Hospital in Kijabe, Kenya. In the region surrounding our client’s facility, there is a large number of lower-extremity amputations due to various infections and diseases. Often, these patients choose to undergo a more invasive transfemoral amputation to enable them to use a less expensive above-knee prosthesis. The goal of the project is to present the orthopedic workshop at CURE with a manufacturable prosthetic knee design in May of 2023 that provides through-knee amputee patients with a more affordable, aesthetically pleasing, and lightweight prosthetic option, thereby removing the need to undergo an additional amputation above the knee. The poster presents the overarching elements of the prosthetic design in addition to the recently integrated locking and damping components, which aid in the functionality of the knee.
Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1013/thumbnail.jp
Dural tears in adult deformity surgery: Incidence, risk factors, and outcomes
Study Design: Retrospective cohort study.
Objectives: Describe the rate of dural tears (DTs) in adult spinal deformity (ASD) surgery. Describe the risk factors for DT and the impact of this complication on clinical outcomes.
Methods: Patients with ASD undergoing surgery between 2008 and 2014 were separated into DT and non-DT cohorts; demographics, operative details, radiographic, and clinical outcomes were compared. Statistical analysis included
Results: A total of 564 patients were identified. The rate of DT was 10.8% (n = 61). Patients with DT were older (61.1 vs 56.5 years,
Conclusions: The rate of DT was 10.8% in an ASD cohort. This is similar to rates of DT reported following surgery for degenerative pathology. A history of prior spine surgery, decompression, interbody fusion, and osteotomies are all associated with an increased risk of DT, but decompression is the only independent risk factor for DT
Time-Spectral Rotorcraft Simulations on Overset Grids
The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake
Recommended from our members
Comparison of Best Versus Worst Clinical Outcomes for Adult Cervical Deformity Surgery.
Study Design: Retrospective cohort study.
Objective: Factors that predict outcomes for adult cervical spine deformity (ACSD) have not been well defined. To compare ACSD patients with best versus worst outcomes.
Methods: This study was based on a prospective, multicenter observational ACSD cohort. Best versus worst outcomes were compared based on Neck Disability Index (NDI), Neck Pain Numeric Rating Scale (NP-NRS), and modified Japanese Orthopaedic Association (mJOA) scores.
Results: Of 111 patients, 80 (72%) had minimum 1-year follow-up. For NDI, compared with best outcome patients (n = 28), worst outcome patients (n = 32) were more likely to have had a major complication (
Conclusions: Factors distinguishing best and worst ACSD surgery outcomes included patient, surgical, and radiographic factors. These findings suggest areas that may warrant greater awareness to optimize patient counseling and outcomes
Assessing the Reproducibility of the Structured Abstracts Generated by ChatGPT and Bard Compared to Human-Written Abstracts in the Field of Spine Surgery: Comparative Analysis
Background: Due to recent advances in artificial intelligence (AI), language model applications can generate logical text output that is difficult to distinguish from human writing. ChatGPT (OpenAI) and Bard (subsequently rebranded as “Gemini”; Google AI) were developed using distinct approaches, but little has been studied about the difference in their capability to generate the abstract. The use of AI to write scientific abstracts in the field of spine surgery is the center of much debate and controversy. Objective: The objective of this study is to assess the reproducibility of the structured abstracts generated by ChatGPT and Bard compared to human-written abstracts in the field of spine surgery. Methods: In total, 60 abstracts dealing with spine sections were randomly selected from 7 reputable journals and used as ChatGPT and Bard input statements to generate abstracts based on supplied paper titles. A total of 174 abstracts, divided into human-written abstracts, ChatGPT-generated abstracts, and Bard-generated abstracts, were evaluated for compliance with the structured format of journal guidelines and consistency of content. The likelihood of plagiarism and AI output was assessed using the iThenticate and ZeroGPT programs, respectively. A total of 8 reviewers in the spinal field evaluated 30 randomly extracted abstracts to determine whether they were produced by AI or human authors. Results: The proportion of abstracts that met journal formatting guidelines was greater among ChatGPT abstracts (34/60, 56.6%) compared with those generated by Bard (6/54, 11.1%; P<.001). However, a higher proportion of Bard abstracts (49/54, 90.7%) had word counts that met journal guidelines compared with ChatGPT abstracts (30/60, 50%; P<.001). The similarity index was significantly lower among ChatGPT-generated abstracts (20.7%) compared with Bard-generated abstracts (32.1%; P<.001). The AI-detection program predicted that 21.7% (13/60) of the human group, 63.3% (38/60) of the ChatGPT group, and 87% (47/54) of the Bard group were possibly generated by AI, with an area under the curve value of 0.863 (P<.001). The mean detection rate by human reviewers was 53.8% (SD 11.2%), achieving a sensitivity of 56.3% and a specificity of 48.4%. A total of 56.3% (63/112) of the actual human-written abstracts and 55.9% (62/128) of AI-generated abstracts were recognized as human-written and AI-generated by human reviewers, respectively. Conclusions: Both ChatGPT and Bard can be used to help write abstracts, but most AI-generated abstracts are currently considered unethical due to high plagiarism and AI-detection rates. ChatGPT-generated abstracts appear to be superior to Bard-generated abstracts in meeting journal formatting guidelines. Because humans are unable to accurately distinguish abstracts written by humans from those produced by AI programs, it is crucial to exercise special caution and examine the ethical boundaries of using AI programs, including ChatGPT and Bard
Fluctuations in Spinal Cord Perfusion During Adult Spinal Deformity Correction Identify Neurologic Changes: Proof of Concept
Introduction: Adult spinal deformity (ASD) surgery carries the risk of spinal cord injury. Spinal cord ischemia is often implicated in the pathogenesis but has not been directly investigated. Here we present our index case as a proof of concept for a study evaluating the role of spinal cord perfusion (SCP) changes in ASD correction. Methods: ASD surgery was performed in the usual fashion with the addition of 1) SCP monitoring, using laser Doppler probe fixated to the dura at the level of the pedicle subtraction osteotomy (PSO) and 2) intrathecal pressure monitoring, using a lumbar drain. Somatosensory evoked potential (SSEP) and motor evoked potential (MEP) were monitored throughout the case. Results: An 84-year-old male with kyphoscoliosis and progressive myelopathy causing diminished motor and sensory function was treated with T4 PSO and long segment reconstruction. At baseline, SSEP signals were detectable in all 4 extremities, MEP signals were present in the right foot only, intrathecal pressure was 4 mm Hg, and mean SCP was 21.2 perfusion units. The osteotomy was performed and reduced in 2 steps. After the first step of reduction, MEP signals appeared in the left leg and increased in amplitude in the right leg, and SCP simultaneously increased to 205.6. Further reduction led to MEP signal loss in both legs and decrease in SCP to 39.2. With partial reversal of the reduction, MEP signals returned in both legs and SCP improved to 76.0. Final reduction maneuvers were then performed in a delayed fashion before closure, with stable MEP signals and a final SCP of 42.9. SSEP signals, vital signs, and intrathecal pressure were stable throughout the case. Postoperatively the patient was neurologically stable. Conclusions: The present case provides the first direct evidence that fluctuations in SCP may contribute to neurologic changes during ASD surgery. Further investigation is under way to further elucidate the underlying mechanisms, with the ultimate goal of developing targeted strategies for spinal cord protection during these high-risk cases
- …