700 research outputs found

    Microwave conductivity of slightly ionized gases and electromagnetic scintillations

    Get PDF
    Two areas of research are briefly summarized. The first is concerned with calculating the conductivity of a slightly ionized gas. A method is proposed which involves an expansion of the Boltzmann collision operator (of the electron distribution function, involving the neutral gas-electron interactions) in powers of the electron-gas mass ratio. The second area of investigation focuses on the problem of a radio wave propagating through the interplanetary medium, taking account of the decreasing plasma density with distance from the sun

    Dietary Protein Deficiency and Mycobacterium Bovis BCG Affect Interleukin-2 Activity in Experimental Pulmonary Tuberculosis

    Get PDF
    Inbred strain 2 guinea pigs were vaccinated with Mycobacterium bovis BCG or were left unvaccinated. They were maintained for 6 weeks on defined, isocaloric diets containing either 30% (control animals) or 10% (animals receiving low protein) ovalbumin as the sole protein source. Animals were challenged by the respiratory route with a low dose of virulent M. tuberculosis H37Rv and killed 4 weeks later. Protein-malnourished animals were not protected by previous vaccination with BCG. Lymphocytes isolated from various tissues were tested in vitro for proliferative responses to mitogen (concanavalin A) and antigen (purified protein derivative [PPD]), production of interleukin-2 (IL-2), and response to exogenous recombinant IL-2 (rIL-2). Protein-malnourished guinea pigs responded only weakly to PPD skin tests, and their blood and lymph node lymphocytes exhibited impaired proliferation when cultured with PPD in vitro. IL-2 levels were consistently low in cultures of stimulated blood and spleen lymphocytes from protein-deprived animals. BCG vaccination of nutritionally normal guinea pigs, on the other hand, induced significantly more IL-2 production by PPD- and concanavalin A-stimulated lymphocytes. The addition of exogenous mouse rIL-2 (40 and 80 U/ml) in vitro to PPD-stimulated blood and lymph node cells from nonvaccinated, protein-deprived guinea pigs resulted in no improvement of the proliferative response. Previous vaccination of malnourished guinea pigs did not consistently enhance the response of PPD-stimulated lymphocytes to added rIL-2. Dietary protein deficiency and BCG vaccination appear to modulate antigen-driven cellular immunity in animals with tuberculosis by altering the production of, and the response to, IL-2 by PPD-stimulated lymphocytes

    Ablation loading of barium ions into a surface electrode trap

    Full text link
    Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities, e.g. due to low natural abundance or radioactivity. Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets, but energetic ablation products can be difficult to confine in the small ion-electrode distance, micron-scale, microfabricated traps amenable to high-speed, high-fidelity manipulation of ion arrays. Here we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability as a function of effective trap volume and other trap parameters. We demonstrate loading of ablated and photoionized barium in two cryogenic surface-electrode traps with 730 μ\mum and 50 μ\mum ion-electrode distances. Our loading success probability agrees with a predictive analytical model, providing insight for the confinement of limited-quantity species of interest for quantum computing, simulation, and sensing

    Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145

    Get PDF
    The final publication is available at Elsevier via http://doi.org/10.1016/j.bbamem.2016.05.020 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Daptomycin and A54145 are homologous lipopeptide antibiotics that permeabilize the cell membranes of Gram-positive bacteria. Membrane permeabilization depends on the presence of both phosphatidylglycerol (PG) and calcium, and it involves the formation of oligomeric transmembrane pores that consist of approximately 6-8 subunits. We here show that each lipopeptide molecule binds two calcium ions in separable, successive steps. The first calcium ion causes the lipopeptide molecule to bind to the target membrane, and likely to form a loosely associated oligomer. Higher calcium concentrations induce binding of a second ion, which produces the more tightly associated and more deeply membrane-inserted final, functional form of the oligomer. Both calcium dependent steps are accompanied by fluorescence signals that indicate transition of specific amino acid residues into less polar environments, suggestive of insertion into the target membrane. Our findings agree with the earlier observation that two of the four acidic amino acid residues in the daptomycin molecule are essential for antibacterial activity. (C) 2016 Elsevier B.V. All rights reserved.This study was supported by operating grants by NSERC to Scott Taylor (155283-2012) and Michael Palmer (250265-2013)

    Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin

    Get PDF
    This research was originally published in Journal of Biological Chemistry. Zhang, T., Muraih, J. K., Tishbi, N., Herskowitz, J., Victor, R. L., Silverman, J., … Mintzer, E. (2014). Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry, 289(17), 11584–11591. © the American Society for Biochemistry and Molecular Biology." Available here: https://doi.org/10.1074/jbc.M114.554444Daptomycin is an acidic lipopeptide antibiotic that, in the presence of calcium, forms oligomeric pores on membranes containing phosphatidylglycerol. It is clinically used against various Gram-positive bacteria such as Staphylococcus aureus and Enterococcus species. Genetic studies have indicated that an increased content of cardiolipin in the bacterial membrane may contribute to bacterial resistance against the drug. Here, we used a liposome model to demonstrate that cardiolipin directly inhibits membrane permeabilization by daptomycin. When cardiolipin is added at molar fractions of 10 or 20% to membranes containing phosphatidylglycerol, daptomycin no longer forms pores or translocates to the inner membrane leaflet. Under the same conditions, daptomycin continues to form oligomers; however, these oligomers contain only close to four subunits, which is approximately half as many as observed on membranes without cardiolipin. The collective findings lead us to propose that a daptomycin pore consists of two aligned tetramers in opposite leaflets and that cardiolipin prevents the translocation of tetramers to the inner leaflet, thereby forestalling the formation of complete, octameric pores. Our findings suggest a possible mechanism by which cardiolipin may mediate resistance to daptomycin, and they provide new insights into the action mode of this important antibiotic

    Reduced parasitemia observed with erythrocytes containing inositol hexaphosphate.

    Get PDF
    Chemicals entrapped in erythrocytes by hypotonic hemolysis can be assessed for possible antiparasitic activity both in vivo and in vitro, regardless of whether they are able to diffuse into erythrocytes readily. Inositol hexaphosphate, a highly charged compound, produced a dramatic lowering of the percentage of cells infected by Babesia microti in vivo and both B. microti and Plasmodium falciparum in vitro. Several possible mechanisms for this observation are discussed

    Enhanced Cas12a editing in mammalian cells and zebrafish

    Get PDF
    Type V CRISPR-Cas12a systems provide an alternate nuclease platform to Cas9, with potential advantages for specific genome editing applications. Here we describe improvements to the Cas12a system that facilitate efficient targeted mutagenesis in mammalian cells and zebrafish embryos. We show that engineered variants of Cas12a with two different nuclear localization sequences (NLS) on the C terminus provide increased editing efficiency in mammalian cells. Additionally, we find that pre-crRNAs comprising a full-length direct repeat (full-DR-crRNA) sequence with specific stem-loop G-C base substitutions exhibit increased editing efficiencies compared with the standard mature crRNA framework. Finally, we demonstrate in zebrafish embryos that the improved LbCas12a and FnoCas12a nucleases in combination with these modified crRNAs display high mutagenesis efficiencies and low toxicity when delivered as ribonucleoprotein complexes at high concentration. Together, these results define a set of enhanced Cas12a components with broad utility in vertebrate systems
    • …
    corecore