118 research outputs found
Modélisation de la rétention de phénols séparés par CLHP – PI avec une phase mobile méthanol – eau
La rétention (log k) d’un mélange hétérogène de phénols séparés en régime isochratique par CLHP – PI, sur une colonne Partisil ODS, avec une phase mobile méthanol – eau a été reliée aux conditions d’analyse (température T ; fraction volumique, φ, du co-solvant organique) et au coefficient de partage n-octanol / eau de Moriguchi (M log P) calculé à l’aide du logiciel DRAGON. L’ensemble de calibrage (40 éléments), obtenu en appliquant l’algorithme DUPLEX, permet de calculer un modèle vérifiant les hypothèses d’un modèle statistique linéaire à effets fixes, robuste, et dont la capacité de prédiction interne n’est pas trop dissemblable de son pouvoir d’ajustement. La validation statistique externe, sur un ensemble test de 26 éléments, atteste de la bonne capacité prédictive des log k n’ayant pas servi au calcul du modèle.Mots-clés: Phénols – CLHP / PI – Rétention –Modèle QSRR.La rétention (log k) d’un mélange hétérogène de phénols séparés en régime isochratique par CLHP – PI, sur une colonne Partisil ODS, avec une phase mobile méthanol – eau a été reliée aux conditions d’analyse (température T ; fraction volumique, φ, du co-solvant organique) et au coefficient de partage n-octanol / eau de Moriguchi (M log P) calculé à l’aide du logiciel DRAGON. L’ensemble de calibrage (40 éléments), obtenu en appliquant l’algorithme DUPLEX, permet de calculer un modèle vérifiant les hypothèses d’un modèle statistique linéaire à effets fixes, robuste, et dont la capacité de prédiction interne n’est pas trop dissemblable de son pouvoir d’ajustement. La validation statistique externe, sur un ensemble test de 26 éléments, atteste de la bonne capacité prédictive des log k n’ayant pas servi au calcul du modèle.Mots-clés: Phénols – CLHP / PI – Rétention –Modèle QSRR
Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes.
BackgroundCancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes.MethodsUM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test.ResultsDespite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2.ConclusionsOur results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment
A Novel 3-Dimensional Culture System as an In Vitro Model for Studying Oral Cancer Cell Invasion
Tissue microenvironment plays a critical role in tumour growth and invasion. This study established a novel 3-dimensional (3-D) cell invasion model for direct microscopic observation of oral cancer cell invasion into the underlying basement membrane and connective tissue stroma. A multilayer cell construct was developed using the OptiCell chamber, consisting of a lower layer of oral mucosa fibroblasts embedded in collagen gel and an overlaying upper layer of oral cancer cells. The two layers are separated by a basement membrane composed of reconstituted extracellular matrix. To verify the applicability of the cell invasion model, multilayer cell constructs of oral squamous cell carcinoma and oral mucosal fibroblasts were exposed to extrinsic urokinase-type plasminogen activator (uPA) or plasminogen activator inhibitor (PAI-1), which are known effectors of cell migration. In addition, the constructs were exposed to both normoxic and hypoxic culture conditions. Microscopic study showed that the presence of uPA enhanced cell invasion, while PAI-1 inhibited cell migration. Western blot and zymographic analysis demonstrated that hypoxia up-regulated uPA and matrix metalloproteinases (MMPs) expression and activity; conversely, PAI-1 level was down-regulated in response to hypoxic challenge as compared to normoxic condition. Our results indicated that the novel 3-D invasion model could serve as an excellent in vitro model to study cancer cell invasion and to test conditions or mediators of cellular migration. © 2005 Blackwell Publishing Ltd
Impact of Hydraulic Developments on the Quality of Surface Water in the Mafragh Watershed, El Tarf, Algeria
The wadis are environments of great ecological and economic importance. They are the seat of several hydraulic developments. The latter disrupts the functioning of the wadi in different ways. They modify their hydrological regime, disrupt the ecological conditions upstream and downstream of the reservoir, reduce the self-purification capacities, and modify the processes of erosion and solid transport. It is in this perspective that we have carried out a study of the impact of hydraulic installations on the quality of the waters of the Mafragh watershed. The hydrographic network of the watershed receives the wastewater discharged by the localities and by the industries located along these rivers. This wastewater contributes to the degradation of the water quality of the wadis. The spatio-temporal variation of the water quality index showed a good quality at the level of the dams, while at the level of the sites, which are located downstream, the quality generally varies between bad and very bad during the study period
Treatment With siRNA and Antisense Oligonucleotides Targeted to HIF-1α Induced Apoptosis in Human Tongue Squamous Cell Carcinomas
Overexpression of hypoxia inducible factor-1α (HIF-1α) in cancers has been correlated to a more aggressive tumor phenotype. We investigated the effect of HIF-1α knockout on the in vitro survival and death of human tongue squamous cell carcinomas (SCC-4 and SCC-9). Under normoxic condition, a basal level of HIF-1α protein was constitutively expressed in SCC-9 cells, albeit an undetectable level of HIF-1α messages. Exposure to hypoxia induced only a transient increase in mRNA transcript but a prolonged elevation of HIF-1α protein and its immediate downstream target gene product, VEGF. Under normoxic or hypoxic conditions, treatment of SCC-9 cells with AS-HIF-1α ODN suppressed both constitutive and hypoxia-induced HIF-1αa expression at both mRNA and protein levels; Knockout of HIF-αa gene expression via either AS-HIF-1α ODN or siRNA (siRNA HIF-1α treatment resulted in inhibition of cell proliferation and induced apoptosis in SCC-4 and SCC-9 cells. We also demonstrated that exposure of SCC-9 cells to hypoxia led to a time-dependent increase In the expression of bcl-2 and IAP-2, but not p53. The attenuated levels of bcl-2 and IAP-2, and the enhanced activity of caspase-3 after treatment with AS-HIF-1α ODN may contribute partly to the effects of HIF-1α blockade on SCC-9 cell death. Collectively, our data suggest that a constitutive or hypoxia-induced expression of HIF-1α In SCC-9 and SCC-4 cells is sufficient to confer target genes expression essential for tumor proliferation and survival. As a result, interfering with HIF-1α pathways by antisense or siRNA strategy may provide a therapeutic target for human tongue squamous cell carcinomas. © 2004 Wiley-Liss, Inc
Green Tea Extract and (−)-Epigallocatechin-3-Gallate Inhibit Mast Cell-Stimulated Type I Collagen Expression in Keloid Fibroblasts via Blocking PI-3K/Akt Signaling Pathways
Keloid, a chronic fibro-proliferative disease, exhibits distinctive histological features characterized by an abundant extracellular matrix stroma, a local infiltration of inflammatory cells including mast cells (MCs), and a milieu of enriched cytokines. Previous studies have demonstrated that co-culture with MCs stimulate type I collagen synthesis in fibroblasts, but the signaling mechanisms remain largely unknown. In this study, we investigated the signaling pathways involved in MC-stimulated type I collagen synthesis and the effects of green tea extract (GTE) and its major catechin, (-)-epigallocatechin-3-gallate (EGCG), on collagen homeostasis in keloid fibroblasts. Our results showed that MCs significantly stimulated type I collagen expression in keloid fibroblasts, and the upregulation of type I collagen was significantly attenuated by blockade of phosphatidylinositol-3-kinase (PI-3K), mammalian target of rapamycin (mTOR), and p38 MAPK signaling pathways, but not by blockade of ERK1/2 pathway. Furthermore, GTE and EGCG dramatically inhibited type I collagen production possibly by interfering with the PI-3K/Akt/mTOR signaling pathway. Our findings suggest that interaction between MCs and keloid fibroblasts may contribute to excessive collagen accumulation in keloids and imply a therapeutic potential of green tea for the intervention and prevention of keloids and other fibrotic diseases. © 2006 The Society for Investigative Dermatology
Green Tea Extract and (−)-Epigallocatechin-3-Gallate Inhibit Mast Cell-Stimulated Type I Collagen Expression in Keloid Fibroblasts via Blocking PI-3K/Akt Signaling Pathways
Keloid, a chronic fibro-proliferative disease, exhibits distinctive histological features characterized by an abundant extracellular matrix stroma, a local infiltration of inflammatory cells including mast cells (MCs), and a milieu of enriched cytokines. Previous studies have demonstrated that co-culture with MCs stimulate type I collagen synthesis in fibroblasts, but the signaling mechanisms remain largely unknown. In this study, we investigated the signaling pathways involved in MC-stimulated type I collagen synthesis and the effects of green tea extract (GTE) and its major catechin, (-)-epigallocatechin-3-gallate (EGCG), on collagen homeostasis in keloid fibroblasts. Our results showed that MCs significantly stimulated type I collagen expression in keloid fibroblasts, and the upregulation of type I collagen was significantly attenuated by blockade of phosphatidylinositol-3-kinase (PI-3K), mammalian target of rapamycin (mTOR), and p38 MAPK signaling pathways, but not by blockade of ERK1/2 pathway. Furthermore, GTE and EGCG dramatically inhibited type I collagen production possibly by interfering with the PI-3K/Akt/mTOR signaling pathway. Our findings suggest that interaction between MCs and keloid fibroblasts may contribute to excessive collagen accumulation in keloids and imply a therapeutic potential of green tea for the intervention and prevention of keloids and other fibrotic diseases. © 2006 The Society for Investigative Dermatology
Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts
Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1α protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1α (HIF-1α) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1α may be a novel therapeutic target to modulate the scar fibrosis process
Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts
Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1α protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1α (HIF-1α) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1α may be a novel therapeutic target to modulate the scar fibrosis process
Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans -Mediated Damage
Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans -EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans ’s filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections
- …