232 research outputs found
THE TRANSCRIPTIONAL FACTOR EGR-1 IS SYNTHESIZED BY BACULOVIRUS-INFECTED INSECT CELLS IN AN ACTIVE, DNA-BINDING FORM
The Egr-1 (zfp-6) gene encodes a zinc-finger-containing nuclear protein that is rapidly and transiently induced in quiescent cells treated with mitogens. We have constructed baculovirus vectors that synthesize mouse Egr-1 protein initiating at two putative ATG start sites. The ATG site producing the larger protein (M(r), 80,000) is similar, if not identical, to Egr-1 synthesized by serum-stimulated quiescent mouse fibroblasts, thus identifying the likely site for translation. The protein synthesized by the insect cells is active as assayed by its ability to bind to a specific DNA sequence that has been identified as an Egr-1 binding site. The insect cell system will allow further studies of the structure and function of the Egr-1 product, a protein that appears to be an important "master switch" for other genes
Inhibition of EGR-1 expression reverses transformation of prostate cancer cells in vitro and in vivo
The Early Growth Response Gene EGR-1 Behaves as a Suppressor Gene That Is Down-Regulated Independent of ARF/Mdm2 but not p53 Alterations in Fresh Human Gliomas.
EGR-1 is an immediate early gene with diverse functions that include the suppression of growth. EGR-1 is down-regulated many cancer cell types, suggesting a tumor suppressor role, and may critically involve the p53 pathway. The aim of this work was to measure the expression of EGR-1 and the p16/INK4a/ARF-Mdm2-p53 pathway status in fresh human gliomas. Thirty-one human gliomas with different grades of malignancy were investigated for Egr-1 mRNA and the protein expression, frequency, and spectrum of p53 gene mutations, mdm2 gene amplification, and p16/INK4a/ARF allele loss. The amplification of Mdm2 and the deletion of the p16/INK4a gene was found in 3 and 5 cases, respectively, whereas mutations of p53, including two novel mutations, were observed in 10 other cases. The three types of changes occurred strictly mutually exclusively, emphasizing that these genes operate in a common pathway critical to glioma progression. EGR-1 mRNA was significantly down-regulated in astrocytomas (14.7 +/- 5.1%) and in glioblastomas (33.6 +/- 10.0%) versus normal brain. Overall, EGR-1 mRNA was strongly suppressed (average, 15.2 +/- 13.9%) in 27 of 31 cases (87%), independent of changes in p16/INK4a/ARF and Mdm2; whereas 4 of 31 cases with residual EGR-1 expression as well as the highest EGR-1 variance segregated with p53 mutations. Immunohistochemical analyses confirmed the suppression of EGR-1 protein. These results indicate that EGR-1 is commonly suppressed in gliomas independent of p16/INK4a/ARF and Mdm2 and that suppression is less crucial in tumors bearing p53 mutations, and these results implicate an EGR-1 growth regulatory mechanism as a target of inactivation during tumor progression
Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells
Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of se- lection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line- specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differenti- ated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming- specific epigenetic signature comprised of nine aberrantly methyl- ated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state
Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes
Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications
Brain Abnormalities and Glioma-Like Lesions in Mice Overexpressing the Long Isoform of PDGF-A in Astrocytic Cells
BACKGROUND: Deregulation of platelet-derived growth factor (PDGF) signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L) and a short (S) isoform of PDGF-A. In contrast to PDGF-A(S), the PDGF-A(L) isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L) and how it functionally differs from the shorter isoform is not well understood.\ud
\ud
METHODOLOGY/PRINCIPAL FINDINGS: We overexpressed PDGF-A(L) as a transgene under control of the glial fibrillary acidic protein (GFAP) promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background.\ud
\ud
CONCLUSIONS: Our findings show that PDGF-A(L) can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L) brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.\ud
\u
A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines
Prior to gastrulation in the mouse, all endodermal cells arise from the primitive
endoderm of the blastocyst stage embryo. Primitive endoderm and its derivatives
are generally referred to as extra-embryonic endoderm (ExEn) because the
majority of these cells contribute to extra-embryonic lineages encompassing the
visceral endoderm (VE) and the parietal endoderm (PE). During gastrulation, the
definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE
comprises most of the cells of the gut and its accessory organs. Despite their
different origins and fates, there is a surprising amount of overlap in marker
expression between the ExEn and DE, making it difficult to distinguish between
these cell types by marker analysis. This is significant for two main reasons.
First, because endodermal organs, such as the liver and pancreas, play important
physiological roles in adult animals, much experimental effort has been directed
in recent years toward the establishment of protocols for the efficient
derivation of endodermal cell types in vitro. Conversely,
factors secreted by the VE play pivotal roles that cannot be attributed to the
DE in early axis formation, heart formation and the patterning of the anterior
nervous system. Thus, efforts in both of these areas have been hampered by a
lack of markers that clearly distinguish between ExEn and DE. To further
understand the ExEn we have undertaken a comparative analysis of three ExEn-like
cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal
carcinomas (EC) of 129 strain mice and have been characterized as parietal
endoderm-like [1], END2 cells are derived from P19 ECs and
described as visceral endoderm-like, while XEN cells are derived from blastocyst
stage embryos and are described as primitive endoderm-like. Our analysis
suggests that none of these cell lines represent a bona fide
single in vivo lineage. Both PYS2 and XEN cells represent mixed
populations expressing markers for several ExEn lineages. Conversely END2 cells,
which were previously characterized as VE-like, fail to express many markers
that are widely expressed in the VE, but instead express markers for only a
subset of the VE, the anterior visceral endoderm. In addition END2 cells also
express markers for the PE. We extended these observations with microarray
analysis which was used to probe and refine previously published data sets of
genes proposed to distinguish between DE and VE. Finally, genome-wide pathway
analysis revealed that SMAD-independent TGFbeta signaling through a TAK1/p38/JNK
or TAK1/NLK pathway may represent one mode of intracellular signaling shared by
all three of these lines, and suggests that factors downstream of these pathways
may mediate some functions of the ExEn. These studies represent the first step
in the development of XEN cells as a powerful molecular genetic tool to study
the endodermal signals that mediate the important developmental functions of the
extra-embryonic endoderm. Our data refine our current knowledge of markers that
distinguish various subtypes of endoderm. In addition, pathway analysis suggests
that the ExEn may mediate some of its functions through a non-classical MAP
Kinase signaling pathway downstream of TAK1
Inhibition of renal cell carcinoma angiogenesis and growth by antisense oligonucleotides targeting vascular endothelial growth factor
Angiogenesis is critical for growth and metastatic spread of solid tumours. It is tightly controlled by specific regulatory factors. Vascular endothelial growth factor has been implicated as the key factor in tumour angiogenesis. In the present studies we evaluated the effects of blocking vascular endothelial growth factor production by antisense phosphorothioate oligodeoxynucleotides on the growth and angiogenic activity of a pre-clinical model of renal cell carcinoma (Caki-1). In vitro studies showed that treating Caki-1 cells with antisense phosphorothioate oligodeoxynucleotides directed against vascular endothelial growth factor mRNA led to a reduction in expressed vascular endothelial growth factor levels sufficient to impair the proliferation and migration of co-cultured endothelial cells. The observed effects were antisense sequence specific, dose dependent, and could be achieved at a low, non-toxic concentration of phosphorothioate oligodeoxynucleotides. When vascular endothelial growth factor antisense treated Caki-1 cells were injected into nude mice and evaluated for their angiogenic potential, the number of vessels initiated were approximately half that induced by untreated Caki-1 cells. To test the anti-tumour efficacy of vascular endothelial growth factor antisense, phosphorothioate oligodeoxynucleotides were administrated to nude mice bearing macroscopic Caki-1 xenografts. The results showed that the systemic administration of two doses of vascular endothelial growth factor antisense phosphorothioate oligodeoxynucleotides given 1 and 4 days after the tumours reached a size of ∼200 mm3 significantly increased the time for tumours to grow to 1000 mm3
Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors
The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation
Relevance of the diploma section "Civil protection"
На сьогоднішньому етапі реформування вищої освіти навчальна дисципліна «Цивільний захист» вже не є нормативною і виключена з навчальних планів у вищих навчальних закладах, у тому числі технічного профілю. Але соціально-економічна ситуація в країні, нажаль, ускладнюється. Тому зростає необхідність і важливість питань захисту населення в умовах надзвичайних ситуацій.The discipline "Civil Protection" is not normative any more and excluded from the curriculum in higher educational institutions, including the technical profile at the present stage of reforming higher education. However, unfortunately, the socio-economic situation in the country is becoming more complicated. In these conditions, the need and importance of protecting the population in emergency situations is increasing
- …