352 research outputs found

    The Water Utility Risk Integration Matrix: Demonstrating Potential for an Integrated Approach to Municipal Water Management

    Get PDF
    Abstract Municipal water utilities traditionally have been managed in isolation with little consideration of common factors affecting risk. An integrated approach to municipal water management has great potential for increasing the resilience of these systems under future uncertainties. In a recent survey conducted by the University of Guelph, respondents from various Canadian municipalities identified aging infrastructure, climate change and urbanization as the top three drivers of risk to water infrastructure. To demonstrate the potential for an integrated approach to risk management of water infrastructure, the Water Utility Risk Integration Matrix document was developed. This interactive document emphasizes commonalities across municipal water sectors and allows users to quickly access relevant information on the previously identified drivers of risk. Each chapter provides an overview of the impact each driver has on water treatment and distribution, sewage conveyance and treatment, combined sewer systems, and stormwater conveyance. The document provides direct access to additional details and external webpages containing statistics and examples for any implications of interest to the user. Relevant guidance and case studies are also incorporated into the document with links to external data sources. This document facilitates information gathering to assist in the widespread adoption of an integrated approach to risk management of municipal water utilities and provides a framework for further development of risk management initiatives

    Standing Balance and Spatiotemporal Aspects of Gait Are Impaired Upon Nocturnal Awakening in Healthy Late Middle-Aged and Older Adults

    Get PDF
    Study Objectives: Nocturnal awakenings may constitute a unique risk for falls among older adults. We describe differences in gait and balance between presleep and midsleep testing, and whether changes in the lighting environment during the midsleep testing further affect gait and balance. Methods: Twenty-one healthy, late middle-aged and older (64.7 ± 8.0 y) adults participated in this repeated-measures design consisting of four overnight laboratory stays. Each night, participants completed baseline visual acuity, gait, and balance testing. After a 2-h sleep opportunity, they were awakened for 13 min into one of four lighting conditions: very dim white light (\u3c 0.5 lux); dim white light (∼28.0 lux); dim orange light (∼28.0 lux); and white room-level light (∼200 lux). During this awakening, participants completed the same sequence of testing as at baseline. Results: Low-contrast visual acuity significantly decreased with decreasing illuminance conditions (F(3,45) = 98.26, p \u3c 0.001). Our a priori hypothesis was confirmed in that variation in stride velocity and center of pressure path length were significantly worse during the mid-sleep awakening compared to presleep baseline. Lighting conditions during the awakening, however, did not influence these parameters. In exploratory analyses, we found that over one-third of the tested gait and balance parameters were significantly worse at the midsleep awakening as compared to baseline (p \u3c 0.05), and nearly one-quarter had medium to large effect sizes (Cohen d ≥ 0.5; r ≥ 0.3). Conclusions: Balance and gait are impaired during midsleep awakenings among healthy, late middle-aged and older adults. This impairment is not ameliorated by exposure to room lighting, when compared to dim lights

    The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Atmospheric humidity, clouds, precipitation, and evapotranspiration are essential components of the Arctic climate system. During recent decades, specific humidity and precipitation have generally increased in the Arctic, but changes in evapotranspiration are poorly known. Trends in clouds vary depending on the region and season. Climate model experiments suggest that increases in precipitation are related to global warming. In turn, feedbacks associated with the increase in atmospheric moisture and decrease in sea ice and snow cover have contributed to the Arctic amplification of global warming. Climate models have captured the overall wetting trend but have limited success in reproducing regional details. For the rest of the 21st century, climate models project strong warming and increasing precipitation, but different models yield different results for changes in cloud cover. The model differences are largest in months of minimum sea ice cover. Evapotranspiration is projected to increase in winter but in summer to decrease over the oceans and increase over land. Increasing net precipitation increases river discharge to the Arctic Ocean. Over sea ice in summer, projected increase in rain and decrease in snowfall decrease the surface albedo and, hence, further amplify snow/ice surface melt. With reducing sea ice, wind forcing on the Arctic Ocean increases with impacts on ocean currents and freshwater transport out of the Arctic. Improvements in observations, process understanding, and modeling capabilities are needed to better quantify the atmospheric role in the Arctic water cycle and its changes.We thank all colleagues involved in the Arctic Freshwater Synthesis (AFS) for fruitful discussions. In particular, John Walsh is acknowledged for his constructive comments on the manuscript. AFS has been sponsored by the World Climate Research Programme’s Climate and the Cryosphere project (WCRP-CliC), the International Arctic Science Committee (IASC), and the Arctic Monitoring and Assessment Programme (AMAP). The work for this paper has been supported by the Academy of Finland (contracts 259537 and 283101), the UK Natural Environment Research Council (grant NE/J019585/1), the US National Science Foundation grant ARC-1023592 and the Program “Arctic” and the Basic Research Program of the Presidium Russian Academy of Sciences. NCAR is supported by the U.S. National Science Foundation. We gratefully acknowledge the project coordination and meeting support of Jenny Baeseman and Gwenaelle Hamon at the CliC International Project Office. No new data were applied in the manuscript. Data applied for Figures 2 and 3 are available from the JRA-55 archive at http://jra. kishou.go.jp/JRA-55/index_en. html#usage
    corecore