563 research outputs found

    Sinusoidal velaroidal shell – numerical modelling of the nonlinear buckling resistance

    Get PDF
    Many works are devoted to linear and nonlinear analyses of shells of classical form. But for thin shells of complex geometry, many things remained to do. Four different sources of nonlinearity exist in solid mechanics. The geometric nonlinearity, the material nonlinearity, the kinetic nonlinearity and the force nonlinearity. The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the material and the geometric nonlinearities. The result of the investigation is the buckling force of the shell under self-weight and uniformly vertically distributed load on its area, the corresponding numerical values of displacements and the buckling mode.Keywords: Nonlinear analysis, nonlinear buckling resistance, numerical modelling, sinusoidal velaroidal shell, geometric nonlinearity, material nonlinearity, kinematic nonlinearity, force nonlinearity

    Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals

    Full text link
    1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated. The temperature dependence of the noise follows the resistivity changes with temperature suggesting that resistivity fluctuations constitute a fixed fraction of the total resistivity, independently of the dissipation mechanism and magnetic state of the system. The noise scales as a square of the current as expected for equilibrium resistivity fluctuations. However, at 77 K at bias exceeding some threshold, the noise intensity starts to decrease with increasing bias. The appearance of nonequilibrium noise is interpreted in terms of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte

    Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals

    Full text link
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70-150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning.Comment: 7 pages, 5 figures, to be published in PR

    Bias Dependent 1/f Conductivity Fluctuations in Low-Doped La1x_{1-x}Cax_{x}MnO3_3 Manganite Single Crystals

    Full text link
    Low frequency noise in current biased La0.82_{0.82}Ca0.18_{0.18}MnO3_{3} single crystals has been investigated in a wide temperature range from 79 K to 290 K. Despite pronounced changes in magnetic properties and dissipation mechanisms of the sample with changing temperature, the noise spectra were found to be always of the 1/f type and their intensity (except the lowest temperature studied) scaled as a square of the bias. At liquid nitrogen temperatures and under bias exceeding some threshold value, the behavior of the noise deviates from the quasi-equilibrium modulation noise and starts to depend in a non monotonic way on bias. It has been verified that the observed noise obeys Dutta and Horn model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and its dependence on bias have been associated with changes in the distribution of activation energies in the underlying energy landscape. These changes have been correlated with bias induced changes in the intrinsic tunneling mechanism dominating dissipation in La0.82_{0.82}Ca0.18_{0.18}MnO3_{3} at low temperatures.Comment: Accepted for publication in the Journal of Applied Physic

    The flows structure in unsteady gas flow in pipes with different cross-sections

    Full text link
    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of complex configuration. On the basis of experimental researches it is established that the strong oscillatory phenomena exist in the inlet pipe of the piston engine arising after the closing of the intake valve. The placement of the profiled plots (with a cross section of a square or an equilateral triangle) in the intake pipe leads to the damping of the oscillatory phenomena and a more rapid stabilization of pulsating flow. This is due to the stabilizing effect of the vortex structures formed in the corners of this configuration

    Green's-function theory of the Heisenberg ferromagnet in a magnetic field

    Full text link
    We present a second-order Green's-function theory of the one- and two-dimensional S=1/2 ferromagnet in a magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced and determined by exact relations. The transverse and longitudinal spin correlation functions and thermodynamic properties (magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are performed. A good agreement of the Green's-function theory with the exact data, with recent quantum Monte Carlo results, and with the spin polarization of a ν=1\nu=1 quantum Hall ferromagnet is obtained. The field dependences of the position and height of the maximum in the temperature dependence of the susceptibility are found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in Landau's theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory provides an improved description of magnetic short-range order as compared with the random phase approximation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-temperature maximum are described by power laws. At higher fields in one and two dimensions, the temperature of the specific heat maximum linearly increases with the field.Comment: 9 pages, 9 figure

    Ferromagnetic domain structure of La0.78Ca0.22MnO3 single crystals

    Get PDF
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70–150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning
    corecore