152 research outputs found

    Land Use: the Kyoto protocol, the FAO definition of forest and the Italian Inventory of Forests and Carbon Stocks

    Full text link

    Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC

    Get PDF
    Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need-and can be-overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles. [References: 19

    Countergradient turbulent transport in a plume with a crossflow

    Get PDF
    Direct numerical simulation of a turbulent forced buoyant plume in a crossflow is performed at a source Reynolds number Re0=1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} Re 0=1000{\text{ Re }}_0=1000\end{document}, Richardson number Ri0=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ri0=1\mathrm{{Ri}}_0=1\end{document}, Prandtl number Pr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Pr=1\mathrm{{Pr}}=1\end{document} and source-to-crossflow velocity ratio R0=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}R0=1R_0=1\end{document}. The instantaneous and temporally averaged flow fields are assessed in detail, providing an overview of the flow dynamics. The velocity, temperature and pressure fields are used together with enstrophy fields to describe qualitatively the evolution of the plume as it is swept downstream by the crossflow, and the mechanisms involved in its evolution are outlined. The plume trajectory is determined quantitatively in a number of ways, and it is shown that the central streamline and the centre of buoyancy of the plume differ significantly-as with jets in crossflow, the central streamline is seen to follow the top of the plume, whereas the centre of buoyancy, by definition, describes the plume as a whole. We then investigate the turbulence properties inside the plume; in particular the eddy viscosity and diffusivity are presented, which are significant parameters in turbulence modelling. Assessment of turbulence production demonstrates the presence of regions where turbulence kinetic energy is redistributed to the kinetic energy of the mean flow, implying a negative eddy viscosity within certain regions of the domain. Similarly, the observation that the buoyancy flux and buoyancy gradient are anti-parallel in specific regions of the flow implies a negative eddy diffusivity in said regions, which must be realised in models of such flows in order to capture the countergradient transport of thermal properties. A characteristic eddy viscosity and diffusivity are presented, and shown to be approximately constant in the fully developed regime, resulting in a constant characteristic turbulent Prandtl number, in turn signifying self-similarity

    Wetland mapping at 10 m resolution reveals fragmentation in southern Nigeria

    Get PDF
    Wetland ecosystems play key roles in global biogeochemical cycling, but their spatial extent and connectivity is often not well known. Here, we detect the spatial coverage and type of wetlands at 10 m resolution across southern Nigeria (total area: 147,094 km2), thought to be one of the most wetland-rich areas of Africa. We use Sentinel-1 and Sentinel-2 imagery supported by 1500 control points for algorithm training and validation. We estimate that the swamps, marshes, mangroves, and shallow water wetlands of southern Nigeria cover 29,924 km2 with 2% uncertainty of 460 km2. We found larger mangrove and smaller marsh extent than suggested by earlier, coarser spatial resolution studies. Average continuous wetland patch areas were 120, 11, 55 and 13 km2 for mangrove, marsh, swamp, and shallow water respectively. Our final map with 10 m pixels captures small patches of wetland which may not have been observed in earlier mapping exercises, with 20% of wetland patches being  250 m pixel dimensions) global wetland datasets and provides data critical for both improving land-surface climate models and for wetland conservation

    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation

    Get PDF
    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestatio

    Targeting deforestation rates in climate change policy: a "Preservation Pathway" approach

    Get PDF
    We present a new methodological approach to incorporating deforestation within the international climate change negotiating regime. The approach, called "Preservation Pathway" combines the desire for forest preservation with the need to reduce emissions associated with forest loss by focusing on the relative rate of change of forest cover as the criteria by which countries gain access to trading preserved forest carbon stocks. This approach avoids the technically challenging task of quantifying historical or future deforestation emission baselines. Rather, it places emphasis on improving quantification of contemporary stocks and the relative decline in deforestation rates necessary to preserve those stocks. This approach places emphasis on the complete emissions trajectory necessary to attain an agreed-upon preserved forest and as such, meets both forest conservation and climate goals simultaneously

    Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+

    Get PDF
    Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates
    • …
    corecore