316 research outputs found

    Flat type thick film inductive sensors

    Get PDF
    Two thick film flat-type inductive sensors are described and tested for distance and profile measurement. The first one is a single-layer spiral while the second one is a multi-layer structure consisting of ten spirals one over the other. The paper describes their geometric configurations together with their simulated magnetic fields and it reports the results from the characterization test i.e. the series-equivalent circuit parameters, the sensitivity and the cross-sensitivity to temperature. An experimental analysis of the sensitivity suggests that optimized values are obtained by an appropriate choice of the working frequency. The sensors are shielded against e.m. noise coming from the nonsensitive area. Moreover, two sensors have been tested in the laboratory using the single layer as a distance sensor and the multi-layer as a transducer for the measurement of a metallic object profile. The results of the tests show a maximum sensitivity of 14mV/µm and a resolution of 0.6 µm for the single layer, while the multi layer one reconstructs the profile with an axial resolution of a few microns and a lateral resolution better than 200 mm

    A Bluetooth-Based Sensor Network With Web Interface

    Full text link

    Flat Type Thick Film Inductive Sensors

    Get PDF
    Two thick film flat-type inductive sensors are described and tested for distance and profile measurement. The first one is a single-layer spiral while the second one is a multi-layer structure consisting of ten spirals one over the other. The paper describes their geometric configurations together with their simulated magnetic fields and it reports the results from the characterization test i.e. the series-equivalent circuit parameters, the sensitivity and the cross-sensitivity to temperature. An experimental analysis of the sensitivity suggests that optimized values are obtained by an appropriate choice of the working frequency. The sensors are shielded against e.m. noise coming from the nonsensitive area. Moreover, two sensors have been tested in the laboratory using the single layer as a distance sensor and the multi-layer as a transducer for the measurement of a metallic object profile. The results of the tests show a maximum sensitivity of 14mV/µm and a resolution of 0.6 µm for the single layer, while the multi layer one reconstructs the profile with an axial resolution of a few microns and a lateral resolution better than 200 mm

    TREM-1 expression on neutrophils and monocytes of septic patients: relation to the underlying infection and the implicated pathogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current knowledge on the exact ligand causing expression of TREM-1 on neutrophils and monocytes is limited. The present study aimed at the role of underlying infection and of the causative pathogen in the expression of TREM-1 in sepsis.</p> <p>Methods</p> <p>Peripheral venous blood was sampled from 125 patients with sepsis and 88 with severe sepsis/septic shock. The causative pathogen was isolated in 91 patients. Patients were suffering from acute pyelonephritis, community-acquired pneumonia (CAP), intra-abdominal infections (IAIs), primary bacteremia and ventilator-associated pneumonia or hospital-acquired pneumonia (VAP/HAP). Blood monocytes and neutrophils were isolated. Flow cytometry was used to estimate the TREM-1 expression from septic patients.</p> <p>Results</p> <p>Within patients bearing intrabdominal infections, expression of TREM-1 was significantly lower on neutrophils and on monocytes at severe sepsis/shock than at sepsis. That was also the case for severe sepsis/shock developed in the field of VAP/HAP. Among patients who suffered infections by Gram-negative community-acquired pathogens or among patients who suffered polymicrobial infections, expression of TREM-1 on monocytes was significantly lower at the stage of severe sepsis/shock than at the stage of sepsis.</p> <p>Conclusions</p> <p>Decrease of the expression of TREM-1 on the membrane of monocytes and neutrophils upon transition from sepsis to severe sepsis/septic shock depends on the underlying type of infection and the causative pathogen.</p

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60&nbsp;years old
    corecore