249 research outputs found

    Design of the RF ion source for the ITER NBI

    Get PDF

    Overview of the design of the ITER heating neutral beam injectors

    Get PDF
    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7MWof 1 MeVD0 or 0.87 MeVH0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam\uf0a0(NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation ofH 12 andD 12 remains acceptable ( 4856%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: \u2022 negative ions are harder to create so that they can be extracted and accelerated from the ion source; \u2022 electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; \u2022 negative ions are easily lost by collisions with the background gas in the accelerator; \u2022 electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; \u2022 positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; \u2022 electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and theNBcell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of theHNBinjectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushingwhich separates the vacuum of the beamline fromthehighpressureSF6 of the high voltage (1MV) transmission line, through which the power, gas and coolingwater are supplied to the beam source. Also themagnetic field reduction system is not described

    Desarrollo de un sistema de localización y seguimiento en tiempo real de una fuente sonora

    Get PDF
    En este trabajo se describe el desarrollo e implementación de un sistema de localización y seguimiento en tiempo real de una fuente sonora implementado sobre un sistema embebido. Para ello, se diseñó una placa de sonido y se programó un algoritmo basado en técnicas de procesamiento digital de señales para realizar la estima del ángulo de la fuente sonora sobre una Raspberry Pi. Por último, se realizó un control sobre un servomotor para realizar el seguimiento en tiempo real de la fuente sonora, en base a la estima del angulo obtenida anteriormente.Sociedad Argentina de Informática e Investigación Operativ

    Desarrollo de un sistema de localización y seguimiento en tiempo real de una fuente sonora

    Get PDF
    En este trabajo se describe el desarrollo e implementación de un sistema de localización y seguimiento en tiempo real de una fuente sonora implementado sobre un sistema embebido. Para ello, se diseñó una placa de sonido y se programó un algoritmo basado en técnicas de procesamiento digital de señales para realizar la estima del ángulo de la fuente sonora sobre una Raspberry Pi. Por último, se realizó un control sobre un servomotor para realizar el seguimiento en tiempo real de la fuente sonora, en base a la estima del angulo obtenida anteriormente.Sociedad Argentina de Informática e Investigación Operativ

    Desarrollo de un sistema de localización y seguimiento en tiempo real de una fuente sonora

    Get PDF
    En este trabajo se describe el desarrollo e implementación de un sistema de localización y seguimiento en tiempo real de una fuente sonora implementado sobre un sistema embebido. Para ello, se diseñó una placa de sonido y se programó un algoritmo basado en técnicas de procesamiento digital de señales para realizar la estima del ángulo de la fuente sonora sobre una Raspberry Pi. Por último, se realizó un control sobre un servomotor para realizar el seguimiento en tiempo real de la fuente sonora, en base a la estima del angulo obtenida anteriormente.Sociedad Argentina de Informática e Investigación Operativ

    Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Get PDF
    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms

    Long non-coding RNA gas5 and intestinal mmp2 and mmp9 expression: A translational study in pediatric patients with IBD

    Get PDF
    Background: The long non-coding RNA (lncRNA) growth arrest–specific transcript 5 (GAS5) seems to be involved in the regulation of mediators of tissue injury, in particular matrix metalloproteinases (MMPs), implicated in the pathogenesis of inflammatory bowel disease (IBD). We investigated the role of GAS5 in regulating MMP2 and MMP9 expression in pediatric patients with IBD and in vitro. Methods: In total, 25 IBD patients were enrolled: For each patient paired inflamed and non-inflamed biopsies were collected. RNA was extracted and GAS5, MMP2, and MMP9 were quantified by TaqMan assay. The expression of GAS5 and MMPs was also determined in the human monocytic THP1 cells differentiated into macrophages and stimulated with lipopolysaccharide (LPS). The function of GAS5 was assessed by overexpressing the lncRNA and evaluating the MMPs levels. Results: Real-time PCR results demonstrated a downregulation of GAS5 and an upregulation of both MMPs in inflamed tissues. In vitro data confirmed the trend observed in patients for the three genes: The stimulation with LPS promoted a downregulation of GAS5 while an increase of MMPs was observed. Overexpression experiments showed that higher levels of GAS5 lead to a decrease of both enzymes. Conclusion: These results provide new information about the role of GAS5 in IBD: The lncRNA could mediate tissue damage by modulating the expression of MMPs

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started
    • …
    corecore