17,310 research outputs found

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure

    Nuclear Lattice Simulations with Chiral Effective Field Theory

    Full text link
    We study nuclear and neutron matter by combining chiral effective field theory with non-perturbative lattice methods. In our approach nucleons and pions are treated as point particles on a lattice. This allows us to probe larger volumes, lower temperatures, and greater nuclear densities than in lattice QCD. The low energy interactions of these particles are governed by chiral effective theory and operator coefficients are determined by fitting to zero temperature few-body scattering data. Any dependence on the lattice spacing can be understood from the renormalization group and absorbed by renormalizing operator coefficients. In this way we have a realistic simulation of many-body nuclear phenomena with no free parameters, a systematic expansion, and a clear theoretical connection to QCD. We present results for hot neutron matter at temperatures 20 to 40 MeV and densities below twice nuclear matter density.Comment: 41 pages, 23 figure

    Mass Hierarchies and the Seesaw Neutrino Mixing

    Get PDF
    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.Comment: 11 pages, no figures, replaced with final version. Minor corrections and one typo corrected. Added one referenc

    Lorentz transformation and vector field flows

    Full text link
    The parameter changes resulting from a combination of Lorentz transformation are shown to form vector field flows. The exact, finite Thomas rotation angle is determined and interpreted intuitively. Using phase portraits, the parameters evolution can be clearly visualized. In addition to identifying the fixed points, we obtain an analytic invariant, which correlates the evolution of parameters.Comment: 11 pages, 3 figures. Section IV revised and title change

    Prediction of stable walking for a toy that cannot stand

    Get PDF
    Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658 (1998)] showed that a gravity-powered toy with no control and which has no statically stable near-standing configurations can walk stably. We show here that a simple rigid-body statically-unstable mathematical model based loosely on the physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-body mechanism behaviors as well as further implicating passive-dynamics as a possible contributor to stability of animal motions.Comment: Note: only corrections so far have been fixing typo's in these comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty, aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E. 4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's and Ruina's other publications and associated video clips) can be found at: http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at http://www.iwr.uni-heidelberg.de/~agboc

    Analysis of atmospheric neutrino oscillations in three-flavor neutrinos

    Get PDF
    We analyze the atmospheric neutrino experiments of Super-Kamiokande (830-920 live days) using the three-flavor neutrino framework with the mass hierarchy m_1 nearly equal m_2 << m_3. We study the sub-GeV, multi- GeV neutrinos and upward through-going and stopping muons zenith angle distributions taking account of the Earth matter effects thoroughly. We obtain the allowed regions of mass and mixing parameters Delm^2_{23}, theta_{13} and theta_{23}. Delm^2_{23} is restricted to 0.002-0.01eV^2 and theta_{13}<13degrees, 35degrees<theta_{23}<55degrees in 90% C.L. For theta_{12}, there is no difference between the large angle solar neutrino solution and small one. From chi^2 fit, the minimum chi^2=55(54DOF) is obtained at Delm^2_{23}=4x10^(-3)eV^2, theta_{13}=10degrees and theta_{23} =45degrees.Comment: 16 pages, 3 figures, LaTe

    Hermitian quark mass matrices with four texture zeros

    Get PDF
    We provide a complete and systematic analysis of hermitian, hierarchical quark mass matrices with four texture zeros. Using triangular mass matrices, each pattern of texture zeros is readily shown to lead to a definite relation between the CKM parameters and the quark masses. Nineteen pairs are found to be consistent with present data, and one other is marginally acceptable. In particular, no parallel structure between the up and down mass matrices is found to be favorable with data.Comment: 18 pages, no figure, references [8] and [10] adde

    Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry

    Full text link
    We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (muSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with superconducting gap = 0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-muSR also suggesting the single-gap s-wave character of the superconductivity. Furthermore, zero-field muSR measurements do not detect spontaneous magnetic fields below Tc, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.Comment: 23 pages, 11 figure
    • …
    corecore