10,768 research outputs found

    Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential

    Full text link
    In this paper we expand our previous investigation of a quantum particle subject to the action of a random potential plus a fixed harmonic potential at a finite temperature T. In the classical limit the system reduces to a well-known ``toy'' model for an interface in a random medium. It also applies to a single quantum particle like an an electron subject to random interactions, where the harmonic potential can be tuned to mimic the effect of a finite box. Using the variational approximation, or alternatively, the limit of large spatial dimensions, together with the use the replica method, and are able to solve the model and obtain its phase diagram in the T(2/m)T - (\hbar^2/m) plane, where mm is the particle's mass. The phase diagram is similar to that of a quantum spin-glass in a transverse field, where the variable 2/m\hbar^2/m plays the role of the transverse field. The glassy phase is characterized by replica-symmetry-breaking. The quantum transition at zero temperature is also discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate file figures.u

    Multiple Components of the Luminous Compact X-ray Source at the Edge of Holmberg II observed by ASCA and ROSAT

    Get PDF
    We report the results of the analysis of ASCA/ROSAT observations of the compact luminous X-ray source found at the edge of the nearby star-forming dwarf galaxy Holmberg II (UGC 4305).Our ASCA spectrum revealed that the X-ray emission extends to the hard band and can be best described by a power-law with a photon spectral index of 1.9. The ASCA spectrum does not fit with a multi-color disk blackbody. The joint ASCA-ROSAT spectrum suggests two components to the spectrum: the hard power-law component and a warm thermal plasma kT~0.3[keV]. An additional absorption over that of our galaxy is required. The wobble correction of the ROSAT HRI image has clearly unveiled the existence of an extended component which amounts to 27+/-5% of the total X-ray emission. These observations indicate that there are more than one component in the X-ray emission. The properties of the point-like component is indicative of an accretion onto an intermediate mass blackhole, unless a beaming is taking place. We argue that the extended component does not come from electron scattering and/or reflection by scattered optically-thick clouds of the central radiation. Possible explanations of this X-ray source include multiple supernova remnants feeding an intermediate-mass blackhole. (abridged)Comment: 12 pages, 6 figures accepted to Astronomical Journa

    Nontrivial quantized Berry phases for itinerant spin liquids

    Full text link
    Quantized Berry phases as local order parameters in t-J models are studied. A texture pattern of the local order parameters is topologically stable due to the quantization of non-Abelian Berry phases defined by low-energy states below a spin gap, which exists in the large J/t case with a few electrons. We have confirmed that itinerant singlets in the wide class of t-J models carry the nontrivial Berry phase pi. In the large J/t case for the one-dimensional t-J model, Berry phases are uniformly pi when the number of electrons is N =4n +2, (n=0,1,2,...n=0,1,2,...).Comment: 8 pages, 4 figure

    Scaling and Crossover Functions for the Conductance in the Directed Network Model of Edge States

    Full text link
    We consider the directed network (DN) of edge states on the surface of a cylinder of length L and circumference C. By mapping it to a ferromagnetic superspin chain, and using a scaling analysis, we show its equivalence to a one-dimensional supersymmetric nonlinear sigma model in the scaling limit, for any value of the ratio L/C, except for short systems where L is less than of order C^{1/2}. For the sigma model, the universal crossover functions for the conductance and its variance have been determined previously. We also show that the DN model can be mapped directly onto the random matrix (Fokker-Planck) approach to disordered quasi-one-dimensional wires, which implies that the entire distribution of the conductance is the same as in the latter system, for any value of L/C in the same scaling limit. The results of Chalker and Dohmen are explained quantitatively.Comment: 10 pages, REVTeX, 2 eps figure

    Stellar Metallicities and SNIa Rates in the Early-type Galaxy NGC5846 from ROSAT and ASCA Observations

    Full text link
    In this paper we analyze the diffuse X-ray coronae surrounding the elliptical galaxy NGC5846, combining measurements from two observatories, ROSAT and ASCA. We map the gas temperature distribution and find a central cool region within an approximately isothermal gas halo extending to a radius of about 50 kpc, and evidence for a temperature decrease at larger radii. With a radially falling temperature profile, the total mass converges to 9.6+/-1.0 10^12 Msun at ~230 kpc radius. Using the spectroscopic measurements, we also derive radial distributions for the heavy elements silicon and iron and find that the abundances of both decrease with galaxy radius. The mass ratio of Si to Fe lies between the theoretical predictions for element production in SN Ia and SN II, suggesting an important role for SN Ia, as well as SN II, for gas enrichment in ellipticals. Using the SN Ia yield of Si, we set an upper limit of 0.012 SNU for the SN Ia rate at radii >50 kpc, which is independent of possible uncertainties in the iron L-shell modeling. We compare our observations with the theoretical predictions for the chemical evolution of ellipticals, taken from Matteucci & Gibson (1995). We conclude that the metal content in stars, if explained by the star formation duration, requires a significant decline in the duration of star formation with galaxy radius, ranging from ~1 Gyr at the center to ~0.01 Gyr at 100 kpc radius. Alternatively, the decline in metallicity with galaxy radius may be caused by a similar drop with radius in the efficiency of star formation. Based on the Si and Fe measurements presented in this paper, we conclude that the latter scenario is preferred, unless a dependence of the SN Ia rate on stellar metallicity is invoked. (Abridged).Comment: 11 pages, figures&tables included, emulapj.sty, accepted for Ap

    A Catalog of Candidate Intermediate-luminosity X-ray Objects

    Full text link
    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, Intermediate-luminosity (Lx[2-10 keV] >= 1e39 erg/s) X-ray Objects (IXOs, a.k.a. ULXs [Ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for IXOs so that it is well above the Eddington luminosity of a 1.4 Msun black hole (10^38.3 erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than non-elliptical galaxies with IXOs, and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.Comment: 29 pages, ApJS, accepted (catalog v2.0) (full resolution version of paper and future releases of catalog at http://www.xassist.org/ixocat_hri

    Multiplet Effects in the Quasiparticle Band Structure of the f1f2f^1-f^2 Anderson Model

    Full text link
    In this paper, we examine the mean field electronic structure of the f1f2f^1-f^2 Anderson lattice model in a slave boson approximation, which should be useful in understanding the physics of correlated metals with more than one f electron per site such as uranium-based heavy fermion superconductors. We find that the multiplet structure of the f2f^2 ion acts to quench the crystal field splitting in the quasiparticle electronic structure. This is consistent with experimental observations in such metals as UPt3UPt_3.Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en

    Bosonization of One-Dimensional Exclusons and Characterization of Luttinger Liquids

    Get PDF
    We achieve a bosonization of one-dimensional ideal gas of exclusion statistics λ\lambda at low temperatures, resulting in a new variant of c=1c=1 conformal field theory with compactified radius R=1/λR=\sqrt{1/\lambda}. These ideal excluson gases exactly reproduce the low-TT critical properties of Luttinger liquids, so they can be used to characterize the fixed points of the latter. Generalized ideal gases with mutual statistics and non-ideal gases with Luttinger-type interactions have also similar behavior, controlled by an effective statistics varying in a fixed-point line.Comment: 13 pages, revte

    Andreev tunnelling in quantum dots: A slave-boson approach

    Get PDF
    We study a strongly interacting quantum dot connected to a normal and to a superconducting lead. By means of the slave-boson technique we investigate the low temperature regime and discuss electrical transport through the dot. We find that the zero bias anomaly in the current-voltage characteristics which is associated to the occurance of the Kondo resonance in the quantum dot, is enhanced in the presence of superconductivity, due to resonant Andreev scattering.Comment: 4 pages, 1 figur

    Edge Current due to Majorana Fermions in Superfluid 3^3He A- and B-Phases

    Full text link
    We propose a method utilizing edge current to observe Majorana fermions in the surface Andreev bound state for the superfluid 3^3He A- and B-phases. The proposal is based on self-consistent analytic solutions of quasi-classical Green's function with an edge. The local density of states and edge mass current in the A-phase or edge spin current in the B-phase can be obtained from these solutions. The edge current carried by the Majorana fermions is partially cancelled by quasiparticles (QPs) in the continuum state outside the superfluid gap. QPs contributing to the edge current in the continuum state are distributed in energy even away from the superfluid gap. The effect of Majorana fermions emerges in the depletion of the edge current by temperature within a low-temperature range. The observations that the reduction in the mass current is changed by T2T^2-power in the A-phase and the reduction in the spin current is changed by T3T^3-power in the B-phase establish the existence of Majorana fermions. We also point out another possibility for observing Majorana fermions by controlling surface roughness.Comment: 13 pages, 4 figures, published versio
    corecore