4,328 research outputs found

    Changes in Imja Tsho in the Mount Everest Region of Nepal

    Get PDF
    Imja Tsho, located in the Sagarmatha ( Everest) National Park of Nepal, is one of the most studied and rapidly growing lakes in the Himalayan range. Compared with previous studies, the results of our sonar bathymetric survey conducted in September of 2012 suggest that its maximum depth has increased from 90.5 to 116.3 +/- 5.2 m since 2002, and that its estimated volume has grown from 35.8 +/- 0.7 to 61.7 +/- 3.7 million m(3). Most of the expansion of the lake in recent years has taken place in the glacier terminus-lake interface on the eastern end of the lake, with the glacier receding at about 52 m yr(-1) and the lake expanding in area by 0.04 km(2) yr(-1). A ground penetrating radar survey of the Imja-Lhotse Shar glacier just behind the glacier terminus shows that the ice is over 200 m thick in the center of the glacier. The volume of water that could be released from the lake in the event of a breach in the damming moraine on the western end of the lake has increased to 34.1 +/- 1.08 million m(3) from the 21 million m(3) estimated in 2002.USAID Climate Change Resilient Development (CCRD) projectFulbright FoundationNational Geographic SocietyCenter for Research in Water Resource

    Effective potential and mass behavior of a self-interacting scalar field theory due to thermal and external electric and magnetic fields effects

    Full text link
    In this article we address the subject of finding the behavior of a charged scalar field ϕ\phi under the influence of external constant magnetic and electric fields, perpendicular to each other, including also thermal effects. For this purpose we derive an expression for the corresponding bosonic propagator. As an application, we explore, in the weak field sector, the mass correction for the self interacting λϕ4\lambda \phi ^4 theory. Our results show that the mass diminishes when the magnetic field appears, for small values of temperature, staring to increase then when the strength of the field rises. In the case when we have only an electric field, the mass always grow with the field intensity. We also analyze the phase diagram associated to spontaneous symmetry breaking of the theory finding inverse magnetic catalysis (IMC) or inverse electric catalysis (IEC) for the cases where only a magnetic field or only an electric field are present, respectively. In both cases, taken separately, we have a scenario where the critical temperature associate to symmetry restoration diminishes as function of the corresponding field strengths. A similar situation happens when both type of fields are simultaneously present. We have dubbed this case as inverse magnetic -electric catalysis (IMEC). In this situation, both fields cooperate for the occurrence of IMEC.Comment: Typos has been corrected and new comments were adde

    Quantum Phase Tomography of a Strongly Driven Qubit

    Get PDF
    The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driven regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg

    Bars and Cold Dark Matter Halos

    Full text link
    The central part of a dark matter halo reacts to the presence and evolution of a bar. Not only does the halo absorb angular momentum from the disk, it can also be compressed and have its shape modified. We study these issues in a series of cosmologically motivated, highly resolved N-body simulations of barred galaxies run under different initial conditions. In all models we find that the inner halo's central density increases. We model this density increase using the standard adiabatic approximation and the modified formula by Gnedin et al. and find that halo mass profiles are better reproduced by this latter. In models with a strong bar, the dark matter in the central region forms a bar-like structure (``dark matter bar''), which rotates together with the normal bar formed by the stellar component (``stellar bar''). The minor-to-major axial ratio of a halo bar changes with radius with a typical value 0.7 in the central disk region. DM bar amplitude is mostly a function of the stellar bar strength. Models in which the bar amplitude increases or stays roughly constant with time, initially large (40%-60%) misalignment between the halo and disk bars quickly decreases with time as the bar grows. The halo bar is nearly aligned with the stellar bar (~10 degrees lag for the halo) after ~2 Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a mechanism to regulate the angular momentum transfer from the disk to the halo.Comment: Modified version after referee's suggestions. 17 pages, 12 figures, accepted by Ap

    Field-induced Bose-Einstein Condensation of triplons up to 8 K in Sr3Cr2O8

    Full text link
    Single crystals of the spin dimer system Sr3Cr2O8 have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of Hc1 ~ 30.4 T and Hc2 ~ 62 T. This field-induced order persists up to ~ 8 K at H ~ 44 T, the highest observed in any quantum magnet where Hc2 is experimentally-accessible. We fit the temperature-field phase diagram boundary close to Hc1 using the expression Tc = A(H-Hc1)^v. The exponent v = 0.65(2), obtained at temperatures much smaller than 8 K, is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr3Cr2O8 is a new realization of a triplon BEC where the universal regimes corresponding to both Hc1 and Hc2 are accessible at He-4 temperatures.Comment: 4 pages, 3 figures, accepted by PR

    The surface-state of the topological insulator Bi2_2Se3_3 revealed by cyclotron resonance

    Get PDF
    To date transport measurements of topological insulators have been dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2_2Se3_3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state

    Structure and Subhalo Population of Halos in a Self-Interacting Dark Matter Cosmology

    Full text link
    We study the structure of Milky Way (MW)- and cluster-sized halos in a Lambda Cold Dark Matter (CDM) cosmology with self-interacting (SI) dark particles. The cross section per unit of particle mass has the form sigma = sig_0(1/v_100)^alpha, where sig_0 is a constant in units of cm^2/gr and v_100 is the relative velocity in units of 100 km/s. Different values for sigma with alpha= 0 or 1 were used. For small values of sigma = const. (sig_0<0.5), the core density of the halos at z=0 is typically higher at a given mass for lower values of sig_0 or, at a given sig_0, for lower masses. For values of sig_0 as high as 3.0, the halos may undergo the gravothermal catastrophe before z=0. When alpha = 1, the core density of cluster- and MW-sized halos is similar. Using sigma = 0.5-1.0x(1/v_100), our predictions agree with the central densities and the core scaling laws of halos both inferred from the observations of dwarf and LSB galaxies and clusters of galaxies. The cumulative Vmax-functions of subhalos in MW-sized halos with (sig_0,alpha) = (0.1,0.0), (0.5,0.0) and (0.5,1.0) agree roughly with observations (luminous satellites) for Vmax > 30 km/s, while at Vmax = 20 km/s the functions are a factor 5-8 higher, similar to the CDM predictions. The halos with SI have slightly more specific angular momentum at a given mass shell and are rounder than their CDM counterparts. We conclude that the introduction of SI particles with sigma \propto 1/v_100 may remedy the cuspy core problem of the CDM cosmogony, while the subhalo population number remains similar to that of the CDM halos.Comment: To appear in ApJ, December 20, 2002. We added plots showing the evolution of the heat capacity profile for halos in the core expansion and gravothermal catastrophe phases. Minor changes in the text were introduce
    • 

    corecore