932 research outputs found

    Warm turbulence in the Boltzmann equation

    Get PDF
    We study the single-particle distributions of three-dimensional hard sphere gas described by the Boltzmann equation. We focus on the steady homogeneous isotropic solutions in thermodynamically open conditions, i.e. in the presence of forcing and dissipation. We observe nonequilibrium steady state solution characterized by a warm turbulence, that is an energy and particle cascade superimposed on the Maxwell-Boltzmann distribution. We use a dimensional analysis approach to relate the thermodynamic quantities of the steady state with the characteristics of the forcing and dissipation terms. In particular, we present an analytical prediction for the temperature of the system which we show to be dependent only on the forcing and dissipative scales. Numerical simulations of the Boltzmann equation support our analytical predictions.Comment: 4 pages, 5 figure

    Efficiency and spectrum of internal gamma-ray burst shocks

    Full text link
    We present an analysis of the Internal Shock Model of GRBs, where gamma-rays are produced by internal shocks within a relativistic wind. We show that observed GRB characteristics impose stringent constraints on wind and source parameters. We find that a significant fraction, of order 20 %, of the wind kinetic energy can be converted to radiation, provided the distribution of Lorentz factors within the wind has a large variance and provided the minimum Lorentz factor is higher than 10^(2.5)L_(52)^(2/9), where L=10^(52)L_(52)erg/s is the wind luminosity. For a high, >10 %, efficiency wind, spectral energy breaks in the 0.1 to 1 MeV range are obtained for sources with dynamical time R/c < 1 ms, suggesting a possible explanation for the observed clustering of spectral break energies in this range. The lower limit to wind Lorenz factor and the upper limit, around (R/10^7 cm)^(-5/6) MeV to observed break energies are set by Thomson optical depth due to electron positron pairs produced by synchrotron photons. Natural consequences of the model are absence of bursts with peak emission energy significantly exceeding 1 MeV, and existence of low luminosity bursts with low, 1 keV to 10 keV, break energies.Comment: 10 pages, 5 ps-figures. Expanded discussion of magnetic field and electron energy fraction. Accepted for publication in Astrophysical Journa

    Vibrational Enhancement of the Effective Donor - Acceptor Coupling

    Full text link
    The paper deals with a simple three sites model for charge transfer phenomena in an one-dimensional donor (D) - bridge (B) - acceptor (A) system coupled with vibrational dynamics of the B site. It is found that in a certain range of parameters the vibrational coupling leads to an enhancement of the effective donor - acceptor electronic coupling as a result of the formation of the polaron on the B site. This enhancement of the charge transfer efficiency is maximum at the resonance, where the effective energy of the fluctuating B site coincides with the donor (acceptor) energy.Comment: 5 pages, 3 figure

    Dynamic Fluctuation Phenomena in Double Membrane Films

    Full text link
    Dynamics of double membrane films is investigated in the long-wavelength limit including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transversal shear hydrodynamic mode. The corresponding Green function acquires as a function of the frequency a cut along the imaginary semi-axis. Fluctuations lead to increasing the attenuation of the squeezing mode it becomes larger than the `bare' value.Comment: 7 pages, Revte

    Bilayer Membrane in Confined Geometry: Interlayer Slide and Steric Repulsion

    Full text link
    We derived free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of liquid-crystalline membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the mid-plane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters free energy via the strain tensor. For small bending deformations the ratio between bending modulus and area compression coefficient, Kb/KA, is proportional to the square of monolayer thickness, h. Using the functional we performed self-consistent calculation of steric potential acting on bilayer between parallel confining walls separated by distance 2d. We found that temperature-dependent curvature at the minimum of confining potential is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. Dispersion has two branches. Confinement between the walls modifies the bending mode with respect to membrane in bulk solution. Simultaneously, inter-layer slipping mode, damped by viscous drag, remains unchanged by confinement.Comment: 23 pages,3 figures, pd

    Surface Screening in the Casimir Force

    Full text link
    We calculate the corrections to the Casimir force between two metals due to the spatial dispersion of their response functions. We employ model-independent expressions for the force in terms of the optical coefficients. We express the non-local corrections to the Fresnel coefficients employing the surface d⊥d_\perp parameter, which accounts for the distribution of the surface screening charge. Within a self-consistent jellium calculation, spatial dispersion increases the Casimir force significatively for small separations. The nonlocal correction has the opposite sign than previously predicted employing hydrodynamic models and assuming abruptly terminated surfaces.Comment: 5 pages, 2 figure

    Finite temperature Casimir effect for graphene

    Full text link
    We adopt the Dirac model for quasiparticles in graphene and calculate the finite temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature the Casimir interaction in such system is just one half of that for two ideal conductors separated by the same distance. In this limit single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while one of the TM mode saturates the ideal metal value. Behaviour of the Casimir interaction for intermediate temperatures and separations accessible for an experiment is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine structure constant and the Fermi velocity.Comment: 13 pages, 2 figures, to appear in Physical Review

    Excitation of surface plasmon-polaritons in metal films with double periodic modulation: anomalous optical effects

    Get PDF
    We perform a thorough theoretical analysis of resonance effects when an arbitrarily polarized plane monochromatic wave is incident onto a double periodically modulated metal film sandwiched by two different transparent media. The proposed theory offers a generalization of the theory that had been build in our recent papers for the simplest case of one-dimensional structures to two-dimensional ones. A special emphasis is placed on the films with the modulation caused by cylindrical inclusions, hence, the results obtained are applicable to the films used in the experiments. We discuss a spectral composition of modulated films and highlight the principal role of ``resonance'' and ``coupling'' modulation harmonics. All the originating multiple resonances are examined in detail. The transformation coefficients corresponding to different diffraction orders are investigated in the vicinity of each resonance. We make a comparison between our theory and recent experiments concerning enhanced light transmittance and show the ways of increasing the efficiency of these phenomena. In the appendix we demonstrate a close analogy between ELT effect and peculiarities of a forced motion of two coupled classical oscillators.Comment: 24 pages, 17 figure

    Polyakov Loops in Strongly-Coupled Plasmas with Gravity Duals

    Full text link
    We study the properties of the Polyakov loop in strongly-coupled gauge plasmas that are conjectured to be dual to five dimensional theories of gravity coupled to a nontrivial single scalar field. We find a gravity dual that can describe the thermodynamic properties and also the expectation value of the Polyakov loop in the deconfined phase of quenched SU(3) QCD up to 3Tc3T_c.Comment: 7 pages, 2 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - oct. 2, 200

    Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces

    Full text link
    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives
    • …
    corecore