94 research outputs found

    Charmonium suppression at RHIC and SPS: a hadronic baseline

    Get PDF
    A kinetic equation approach is applied to model anomalous J/psi suppression at RHIC and SPS by absorption in a hadron resonance gas which successfully describes statistical hadron production in both experiments. The puzzling rapidity dependence of the PHENIX data is reproduced as a geometric effect due to a longer absorption path for J/psi production at forward rapidity.Comment: 16 pages, 6 figures, final version accepted for publication in Phys. Lett.

    Ricci flows, wormholes and critical phenomena

    Full text link
    We study the evolution of wormhole geometries under Ricci flow using numerical methods. Depending on values of initial data parameters, wormhole throats either pinch off or evolve to a monotonically growing state. The transition between these two behaviors exhibits a from of critical phenomena reminiscent of that observed in gravitational collapse. Similar results are obtained for initial data that describe space bubbles attached to asymptotically flat regions. Our numerical methods are applicable to "matter-coupled" Ricci flows derived from conformal invariance in string theory.Comment: 8 pages, 5 figures. References added and minor changes to match version accepted by CQG as a fast track communicatio

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface M⊂ZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Static flow on complete noncompact manifolds I: short-time existence and asymptotic expansions at conformal infinity

    Full text link
    In this paper, we study short-time existence of static flow on complete noncompact asymptotically static manifolds from the point of view that the stationary points of the evolution equations can be interpreted as static solutions of the Einstein vacuum equations with negative cosmological constant. For a static vacuum (Mn,g,V),(M^n,g,V), we also compute the asymptotic expansions of gg and VV at conformal infinity.Comment: 25 page

    Ricci flow and black holes

    Get PDF
    Gradient flow in a potential energy (or Euclidean action) landscape provides a natural set of paths connecting different saddle points. We apply this method to General Relativity, where gradient flow is Ricci flow, and focus on the example of 4-dimensional Euclidean gravity with boundary S^1 x S^2, representing the canonical ensemble for gravity in a box. At high temperature the action has three saddle points: hot flat space and a large and small black hole. Adding a time direction, these also give static 5-dimensional Kaluza-Klein solutions, whose potential energy equals the 4-dimensional action. The small black hole has a Gross-Perry-Yaffe-type negative mode, and is therefore unstable under Ricci flow. We numerically simulate the two flows seeded by this mode, finding that they lead to the large black hole and to hot flat space respectively, in the latter case via a topology-changing singularity. In the context of string theory these flows are world-sheet renormalization group trajectories. We also use them to construct a novel free energy diagram for the canonical ensemble.Comment: 31 pages, 14 color figures. v2: Discussion of the metric on the space of metrics corrected and expanded, references adde

    An Introduction to Conformal Ricci Flow

    Full text link
    We introduce a variation of the classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint. The resulting equations are named the Conformal Ricci Flow Equations because of the role that conformal geometry plays in constraining the scalar curvature. These equations are analogous to the incompressible Navier-Stokes equations of fluid mechanics inasmuch as a conformal pressure arises as a Lagrange multiplier to conformally deform the metric flow so as to maintain the scalar curvature constraint. The equilibrium points are Einstein metrics with a negative Einstein constant and the conformal pressue is shown to be zero at an equilibrium point and strictly positive otherwise. The geometry of the conformal Ricci flow is discussed as well as the remarkable analytic fact that the constraint force does not lose derivatives and thus analytically the conformal Ricci equation is a bounded perturbation of the classical unnormalized Ricci equation. That the constraint force does not lose derivatives is exactly analogous to the fact that the real physical pressure force that occurs in the Navier-Stokes equations is a bounded function of the velocity. Using a nonlinear Trotter product formula, existence and uniqueness of solutions to the conformal Ricci flow equations is proven. Lastly, we discuss potential applications to Perelman's proposed implementation of Hamilton's program to prove Thurston's 3-manifold geometrization conjectures.Comment: 52 pages, 1 figur

    Existence of Ricci flows of incomplete surfaces

    Full text link
    We prove a general existence result for instantaneously complete Ricci flows starting at an arbitrary Riemannian surface which may be incomplete and may have unbounded curvature. We give an explicit formula for the maximal existence time, and describe the asymptotic behaviour in most cases.Comment: 20 pages; updated to reflect galley proof correction

    Ricci Flow Gravity

    Get PDF
    A theory of gravitation is proposed, modeled after the notion of a Ricci flow. In addition to the metric an independent volume enters as a fundamental geometric structure. Einstein gravity is included as a limiting case. Despite being a scalar-tensor theory the coupling to matter is different from Jordan-Brans-Dicke gravity. In particular there is no adjustable coupling constant. For the solar system the effects of Ricci flow gravity cannot be distinguished from Einstein gravity and therefore it passes all classical tests. However for cosmology significant deviations from standard Einstein cosmology will appear.Comment: 15 pages. V2: improved presentation, in particular Jordan vs. Brans-Dicke and on viability. Added section on physical interpretation. V3: more references. Reworked to agree with published versio

    A spinorial energy functional: critical points and gradient flow

    Full text link
    On the universal bundle of unit spinors we study a natural energy functional whose critical points, if dim M \geq 3, are precisely the pairs (g, {\phi}) consisting of a Ricci-flat Riemannian metric g together with a parallel g-spinor {\phi}. We investigate the basic properties of this functional and study its negative gradient flow, the so-called spinor flow. In particular, we prove short-time existence and uniqueness for this flow.Comment: Small changes, final versio

    A numerical approach to finding general stationary vacuum black holes

    Full text link
    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon this equation has previously been shown to be elliptic, and Ricci flow and Newton's method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes, considered previously by Harmark, general enough to include the asymptotically flat case in higher dimensions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson's boundary conditions. We demonstrate both Newton's method and Ricci flow to find these Lorentzian solutions.Comment: 43 pages, 7 figure
    • …
    corecore