36,434 research outputs found
Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory
The specific heat of liquid helium was calculated theoretically in the Landau
theory. The results deviate from experimental data in the temperature region of
1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau
theory by applying temperature dependence of the elementary excitation energy.
As well known, many-body system has a total energy of Galilean covariant form.
Therefore, the total energy of liquid helium has a nonlinear form for the
number distribution function. The function form can be determined using the
excitation energy at zero temperature and the latent heat per helium atom at
zero temperature. The nonlinear form produces new temperature dependence for
the excitation energy from Bose condensate. We evaluate the specific heat using
iteration method. The calculation results of the second iteration show good
agreement with the experimental data in the temperature region of 0 - 2.1 K,
where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference
Serie
RUSSIAN FARM ENTERPRISE PERFORMANCE AND RESTRUCTURING: A DEBT PROBLEM OR A PROFITABILITY PROBLEM?
Farm Management,
Differential elastic scattering cross sections for 54.9eV positrons incident on helium
Absolute differential elastic scattering cross sections measured with the 3-m, high resolution, time-of-flight spectrometer are presented for 54.9eV positrons incident on He. Five point moving average differential cross sections are plotted against average scattering angles which range from 14 to 36 deg. Also the averages of five differential cross sections which have adjacent values of scattering angle are plotted versus the corresponding averages of the scattering angles. The curve fitted to these data is shaped like the theoretical curve but has its minimum and its maximum at scattering angles that are about 4 deg higher and 15 deg lower respectively than predicted by theory
FIP Bias Evolution in a Decaying Active Region
Solar coronal plasma composition is typically characterized by first
ionization potential (FIP) bias. Using spectra obtained by Hinode's EUV Imaging
Spectrometer (EIS) instrument, we present a series of large-scale, spatially
resolved composition maps of active region (AR) 11389. The composition maps
show how FIP bias evolves within the decaying AR from 2012 January 4-6.
Globally, FIP bias decreases throughout the AR. We analyzed areas of
significant plasma composition changes within the decaying AR and found that
small-scale evolution in the photospheric magnetic field is closely linked to
the FIP bias evolution observed in the corona. During the AR's decay phase,
small bipoles emerging within supergranular cells reconnect with the
pre-existing AR field, creating a pathway along which photospheric and coronal
plasmas can mix. The mixing time scales are shorter than those of plasma
enrichment processes. Eruptive activity also results in shifting the FIP bias
closer to photospheric in the affected areas. Finally, the FIP bias still
remains dominantly coronal only in a part of the AR's high-flux density core.
We conclude that in the decay phase of an AR's lifetime, the FIP bias is
becoming increasingly modulated by episodes of small-scale flux emergence, i.e.
decreasing the AR's overall FIP bias. Our results show that magnetic field
evolution plays an important role in compositional changes during AR
development, revealing a more complex relationship than expected from previous
well-known Skylab results showing that FIP bias increases almost linearly with
age in young ARs (Widing Feldman, 2001, ApJ, 555, 426)
An Optimal Linear Time Algorithm for Quasi-Monotonic Segmentation
Monotonicity is a simple yet significant qualitative characteristic. We
consider the problem of segmenting a sequence in up to K segments. We want
segments to be as monotonic as possible and to alternate signs. We propose a
quality metric for this problem using the l_inf norm, and we present an optimal
linear time algorithm based on novel formalism. Moreover, given a
precomputation in time O(n log n) consisting of a labeling of all extrema, we
compute any optimal segmentation in constant time. We compare experimentally
its performance to two piecewise linear segmentation heuristics (top-down and
bottom-up). We show that our algorithm is faster and more accurate.
Applications include pattern recognition and qualitative modeling.Comment: This is the extended version of our ICDM'05 paper (arXiv:cs/0702142
Phenomenology of Dirac Neutrinogenesis in Split Supersymmetry
In Split Supersymmetry scenarios the possibility of having a very heavy
gravitino opens the door to alleviate or completely solve the worrisome
"gravitino problem'' in the context of supersymmetric baryogenesis models. Here
we assume that the gravitino may indeed be heavy and that Majorana masses for
neutrinos are forbidden as well as direct Higgs Yukawa couplings between left
and right handed neutrinos. We investigate the viability of the mechansim known
as Dirac leptogenesis (or neutrinogenesis), both in solving the baryogenesis
puzzle and explaining the observed neutrino sector phenomenology. To
successfully address these issues, the scenario requires the introduction of at
least two new heavy fields. If a hierarchy among these new fields is
introduced, and some reasonable stipulations are made on the couplings that
appear in the superpotential, it becomes a generic feature to obtain the
observed large lepton mixing angles. We show that in this case, it is possible
simultaneously to obtain both the correct neutrino phenomenology and enough
baryon number, making thermal Dirac neutrinogenesis viable. However, due to
cosmological constraints, its ability to satisfy these constraints depends
nontrivially on model parameters of the overall theory, particularly the
gravitino mass. Split supersymmetry with m_{3/2} between 10^{5} and 10^{10} GeV
emerges as a "natural habitat" for thermal Dirac neutrinogenesis.Comment: 37 pages, 8 figure
- …