2,099 research outputs found

    Flight evaluation of LORAN-C in the State of Vermont

    Get PDF
    A flight evaluation of LORAN C as a supplement to existing navigation aids for general aviation aircraft, particularly in mountainous regions of the United States and where VOR coverage is limited was conducted. Flights, initiated in the summer months, extend through four seasons and practically all weather conditions typical of northeastern U.S. operations. Assessment of all the data available indicates that LORAN C signals are suitable as a means of navigation during enroute, terminal and nonprecision approach operations and the performance exceeds the minimum accuracy criteria

    On the structure of the Si(103) surface

    Full text link
    Although (103) is a stable nominal orientation for both silicon and germanium, experimental observations revealed that in the case of silicon this surface remains disordered on an atomic scale even after careful annealing. We report here a set of low-energy reconstruction models corresponding to 1×21\times 2, 2×22\times 2, and 1×41\times 4 periodicities, and propose that the observed disorder stems from the presence of several coexisting reconstructions with different morphologies and nearly equal surface energies. These models also suggest that the model structures previously reported in the literature for the (103) orientation have very high surface energies and are thus unlikely to be experimentally observed.Comment: 4 pages, 3 figures, submitted for publicatio

    Charmonium properties from lattice QCD + QED: hyperfine splitting, J/ψJ/\psi leptonic width, charm quark mass and aμca_{\mu}^c

    Get PDF
    We have performed the first nf=2+1+1n_f = 2+1+1 lattice QCD computations of the properties (masses and decay constants) of ground-state charmonium mesons. Our calculation uses the HISQ action to generate quark-line connected two-point correlation functions on MILC gluon field configurations that include u/du/d quark masses going down to the physical point, tuning the cc quark mass from MJ/ψM_{J/\psi} and including the effect of the cc quark's electric charge through quenched QED. We obtain MJ/ψMηcM_{J/\psi}-M_{\eta_c} (connected) = 120.3(1.1) MeV and interpret the difference with experiment as the impact on MηcM_{\eta_c} of its decay to gluons, missing from the lattice calculation. This allows us to determine ΔMηcannihiln\Delta M_{\eta_c}^{\mathrm{annihiln}} =+7.3(1.2) MeV, giving its value for the first time. Our result of fJ/ψ=f_{J/\psi}= 0.4104(17) GeV, gives Γ(J/ψe+e)\Gamma(J/\psi \rightarrow e^+e^-)=5.637(49) keV, in agreement with, but now more accurate than experiment. At the same time we have improved the determination of the cc quark mass, including the impact of quenched QED to give mc(3GeV)\overline{m}_c(3\,\mathrm{GeV}) = 0.9841(51) GeV. We have also used the time-moments of the vector charmonium current-current correlators to improve the lattice QCD result for the cc quark HVP contribution to the anomalous magnetic moment of the muon. We obtain aμc=14.638(47)×1010a_{\mu}^c = 14.638(47) \times 10^{-10}, which is 2.5σ\sigma higher than the value derived using moments extracted from some sets of experimental data on R(e+ehadrons)R(e^+e^- \rightarrow \mathrm{hadrons}). This value for aμca_{\mu}^c includes our determination of the effect of QED on this quantity, δaμc=0.0313(28)×1010\delta a_{\mu}^c = 0.0313(28) \times 10^{-10}.Comment: Added extra discussion on QED setup, some new results to study the effects of strong isospin breaking in the sea (including new Fig. 1) and a fit stability plot for the hyperfine splitting (new Fig. 7). Version accepted for publication in PR

    Deconstructing interventions: approaches to studying behavior change techniques across obesity interventions

    Get PDF
    Deconstructing interventions into the specific techniques that are used to change behavior represents a new frontier in behavioral intervention research. This paper considers opportunities and challenges in employing the Behavior Change Techniques Taxonomy (BCTTv1) developed by Michie and colleagues, to code the behavior change techniques (BCTs) across multiple interventions addressing obesity and capture dose received at the technique level. Numerous advantages were recognized for using a shared framework for intervention description. Coding interventions at levels of the social ecological framework beyond the individual level, separate coding for behavior change initiation vs. maintenance, fidelity of BCT delivery, accounting for BCTs mode of delivery, and tailoring BCTs, present both challenges and opportunities. Deconstructing interventions and identifying the dose required to positively impact health-related outcomes could enable important gains in intervention science

    Opening the Rome-Southampton window for operator mixing matrices

    Full text link
    We show that the running of operators which mix under renormalization can be computed fully non-perturbatively as a product of continuum step scaling matrices. These step scaling matrices are obtained by taking the "ratio" of Z matrices computed at different energies in an RI-MOM type scheme for which twisted boundary conditions are an essential ingredient. Our method allows us to relax the bounds of the Rome-Southampton window. We also explain why such a method is important in view of the light quark physics program of the RBC-UKQCD collaborations. To illustrate our method, using n_f=2+1 domain-wall fermions, we compute the non-perturbative running matrix of four-quark operators needed in K->pipi decay and neutral kaon mixing. Our results are then compared to perturbation theory.Comment: 8 pages, 7 figures. v2: PRD version, minor changes and few references adde

    Seasonality and predictability shape temporal species diversity

    Get PDF
    Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non‐nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we developed a framework for quantifying both seasonality and predictability of habitats, and applied this using global long‐term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly predictable and highly seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly seasonal mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g., dam operations, bioassessment) spanning gradients of climatic variability
    corecore