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PREFACE

Radionavigation is required to support movement of resources, raw
materials, manufactured goods and people in the processes of economy and trade
and to insure safety of life and property in commercial land, sea and air
transportation systems. The Department of Transportuuion is the primary
Government provider of aids to navigation used by the aivil community, The
Research and Special Programs Administration plans, directs, and sponsors
radionavigation research, engineering, and development activities to improve
existing operations or to assess future system alternatives., The LORAN-C
FLIGHT EXPERIMENTS program, documented in this report, was designed to
determine the suitability of LORAN-C for enroute and terminal nevigation and
for non-precision approaches at small airports in mountainous terrain,

The success of the program is a result of the combined efforts of three
federal government organizations (DOT's RSPA, FAA and NASA) and one state
organization (Vermont's Agency of Transportation). This report was written
under the direction of the principal author and project engineer Franklin It,
MacKenzie, assisted by Carroll D, Lytle of the Langley Research Center, Major
editorial contributions throughout the report were made by William B,
Polhemus, Polhemus Associates, Inc. The section on flight procedural test
results was written by William C. Hoffman and Bruce C. Lubow of Flight
Transportation Associates; the section on ground based LORAN-C signal
monitoring results was written by Julian L, Center and Krishnan Natarajan of
JAYCOR.

The technical review team included George H, Quinn of the Federal Aviation
Administration, Walter M. Hollister, Flight Transportation Associates, Bahar
J. Uttan of JAYCOR, Paul D. Abramson and Maurice J. Moroney, Jr. of the
Transportation Systems Center, and Geoirge C. Combes of the Vermont Agency of
Transportation,

Sections 1, 2, and 3 constitute the final report, The first contains
introductory material, and the second the test results. This is followed by a
summary of the significant results of the test program, Following the main
body of the report are three appendices, going into greater detail on LORAN-C
performance characteristies, the results of an FAA sponsored LORAN-C recelver
study and an analysis of twe of the 104 flights completed during the test
program, Also included is a List of Abbreviations Used.

111 Preceding page blank
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EXECUTIVE SUMMARY

Introduction

The use of a LORAN-C navigahor as a navigation system suitable for Area
Navigation (RNAV) in the National Airspace System requires that several
accuracy and operational questions be answered. The U.S. Department of
Transportation (DOT), the National Aeronautics and Space Administration (NASA)
and the State of Vermont developed a cooperative research program to evaluate
the feasibility of using LORAN-C to satisfy enroute, terminal and

non-precision approach accuracy requirements,

The State of Vermont requested this program in an attempt to find a
relatively low cost technique to allow airecraft to operate into and out of
twenty-five aviation facilities situated in mountainous terrain. The
geographical environment, rapid changes in weather, seasonal variations, and

limited number and capability of navigational facilities characteristic of
Vermont's navigation problem are shared by other regions of the U.S.
Therefore, it should be possible to generalize results obtained in Vermont to
these other regions,

Scope Of Tests

The overall goal of this test program was to generate a comprehensive data
base of technical and operational experience with the LORAN-C navigator as an
air navigation system. Specific objectives of the program are:

1. Document the adheivable accuracy of the LORAN-C navigator as an RNAV
system, for enroute, terminal and for non-precision approaches to remote

airports in the mountainous Vermont terrain.

2. Evaluate the operational and procedural requirements for routine use of

the navigator in this environment.
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3. Measure LORAN-C signal characteristics at four ground monitoring sites in
Vermont over an 18 month period to determine electromagnetio
compatibility, predictability, temporal stability and the availability of
the signal for airborne navigation,

i, Obtain FAA approval by Supplemental Type Certification (STC) for the
LORAN-C equipment installation in the Twin Bonanza.

The flight program was designed to determine the suitability of using a
general aviation class, off-the~shelf, LORAN~( navigator as a means of
navigating during enroute, terminal and non-precision approach operations.
Minimum accuracy criteria established for the evaluation program are those
specified by FAA Advisory Circular 90-45A "Approval of Area Navigation Systems
for Use in the U.S. National Airspace System",

Summary Of Activities

The DOT/NASA/Stake of Vermont LORAN-C experimen-al team has completed 104
successful flights and 226 airborne hours of operation, The Twin Bonanza
aircraft was used in the evaluation of FAA-desighed non.-precision LORAN-C
approaches to nine runways at five airports. Terminal Area and Enroute RNAV
procedures and navigation accuracies were evaluated. A cross section of
general aviation pilots participated in the evaluation as a means of assessing
pilot reaction, workload and potential improvements. All reactions were
supportive of the objectives of the program.

This report documents the results from the 104 flights completed during
the flight test program. The number of operations during this period includes
215 approaches and 274 RNAV segments. The flights were conducted in both
visual and instrument meteorological conditions; during daylight, at night and
during twilight hours; using both the primary and alternate triads of the
Northeast LORAN-C chain,
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In addition, during the test period, four ground based monitor units
acquired extensive data describing tho LORAN-C signal characteristics. The

number of days of accumulated data were:!

Site 1. Burlington Airport (NASA trailor) 168 days,
Site 2, Burlington Airport {Air North Hanger) 193 days.
Site 3. Rutland Airport 120 days.
Site 4, Newport Airport 131 days.

Results and Conclusions

Measured performance was shown to exceed the minimum accuracy requirements
specified for area navigation in the FAA Advisory Circular 90-45A for all
phases of flight, The LORAN-C navigator system was found to be satisfactory
for non-precision approaches (the most demanding of the accuracy requirements)
at all test site airports once the runway threshold latitude and longitude
coordinates were verified. It was also demonstrated with visual measurement
that accuracy was further improved by inserting locally measured parallel
offset values. All error sources were identified and measured. All of the
error values were found to be much less than the displayed resolution in the
I.ORAN~C navigator and did not warrent compensation when navigating using
signals from the primary triad.

The evaluation of the operational and procedural requirements to use the
system demonstrated a potential benefit for the air traffic control system and
the general aviation user, Air traffic control would benefit from the
capability of providing enroute-direct and traffic reliever routes; general
aviation would benefit from shorter, more direct routing for approaches and

departures.
The evaluation of the LORAN-C signal characteristics from the ground

monitor sites demonstrated compatibility, stability and availability. The
receivers were not effected by any noise sources found at medium
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or small size airports in Vermont, The LORAN-C measurements demonstrated a
long term stability (relative insensitivity to seasonal changes) of .06 nm
peak-to-peak, Signal availability was determined to exceed 99%.

[

It was concluded that the LORAN-C transmitter station signals and the
airborne navigator meet all relevant oriteria for RNAV throughout the area of
operation,

! a. Enroute Accuracy Results

During the test period, 66 enroute segments were completed within the
precision test range. A total of 29 flights were analyzed for compliance with
the acocuracy requirements of AC90-45A., 1In all error categories, the values
were determined to be substantially less than the values stated in the
advisory document, The mean total system cross track error plus two standard

deviations about the mean value is 0.73 nm as compared with the AC90~45A
performance requirement of 2.5nm. The major contribution to the error was the
pilots ability to null the cross track deviation indicator.

b. Terminal Accuracy Results

One hundred five (105) terminal segments (25 flights) were flown on the
precision test range. These segments were analyzed for compliance with the
performance requirements in the advisory document, The mean total system
cross track error plus two standard deviations about the mean value is 0.60
nm. The AC90-45A, minimum performance requirement is 1.5 nm. Again the major
.gf contributor to the error was the pilots ability to null the indicator.

¢, Approach Accuracy Results
During the test period 76 approaches were flown on the precision test

range. Scheduled non-precision approaches were made to 8 runways at 4§
airports. Test data from the 31 flights were analyzed for compliance with the

%
»
b
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requirements listed in the advisory document., The mean plus two standard
deviations value of total system cross track error was 0,32 nm and is to be
compared with the AC90-45A value of 0.6nm,

d., Approach Accuracy Results Using Parallel Offsets,

All of the visual estimations of cross track error reported for 272
approaches were less than the AC90-45A performance limit of 0.6 nm, Over half
of the apprcaches were completed with an estimated oross track error between
0-150 feet and elghty percent of the approaches were completed with an
observed cross track error measured at runway threshold of less than 300 feet,

e, Error Source Identification and Values

It was possible to identify the following sources of error and to
determine their values,

The dynamic error in position due to the motion of the aircraft while
collecting data was ,02nm (122 feet). The mean error in the knowledge of
transponder coordinates was determined to be in the same range (100 feet).
This error was not caused by errors in the survey but by incorrect estimates
of direction and distance in the occasional repositioning of the transponder.

The uncompensated portion of the velocity of propagation term in the
navigator causes both TD values used for a fix to be a higher value in
microseconds, 0.3 to 0.4 microseconds, than would be the case if the paths
were entirely over sea water. The resulting latitude and longitude
calculations were therefore more west and south of the true position (200 to
300 feet).

The temporal variation in TD value due to ground conductivety changes was
determined to be .06nm (300 to 400 feet) peak-to-peak; the period of variation

was one year,
All of the above error values were much less than the displayed resolution

in the LORAN-C navigator and did not warrent compensation while navigating
with signals from the primary triad. Navigation with the alternate triad
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was acceptable (error values were less than those allowed in the advisory
dooument) when the TDC-711 was provided a calibration value of 2nm south
latitude and ,30nm west longitude,

f. Operational Benefits

The operations in Vermont during the 18-months long flight program have
indicated the possibility .of providing additional departure and arrival paths,
straight-in approaches, improved holding patterns, enroute-direct and traffiec
reliever routes which will increase the safety or efficiency of the National
Airspace System, The ability to define impromptu fixes, fly direct to any
given fix, and fly a parallel onurse, offset from the parent course by a
specified amount, all enhance the performance of today's ATC system,

Moreover, the LORAN~C RNAV capability will permit definition of more direct
routes thereby shortening trip distance, saving fuel and reducing operating

costs for general aviation users,
g. Ground-monltoring Results

All of the results derived from an analysis of the data géthered at the
four ground stations were verified with analysis of airborne test data. It
was concluded from the data analysis that LORAN-C reception in the Vermont
electromagnetic environment can easily support uninterrupted operation while
the aircraft is on the ground or at any altitude, The transmitter stations in
the primary triad provide very high signal-to-noise ratios in Vermont. Two
stations of the alternate triad provide high signal-to-noise ratios; the third
station Carolina Beach provides an acceptable signal-to-noise ratio (greater
than-10db) most of the time (89 percent). Temporal variations were decomposed
into seasonal and diurnal subgets. There was such a large error margin
between observed TD variations in Vermont and AC90-45A requirements that there
was no difficulty in meeting accuracy requirements. By examing the ground
data, airborne data and the U,S. Coast Guard chain logs for the test period it
was concluded that the signal availability is significantly greater than 99
percent for the entire chain,
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Summary

In all regimes and all error categories the LORAN~C syatem has
demonstrated compliance with ACG0-U3A,

Enroute operations were within +.73 nm of the desired track compared with
the requirement of +2.5 nm. Terminal operations were within 4,60 nm of the
desired track compared to the AC90~45A requirement of +1.5 nm and
non-precision final approach operations were +.32nm, also, within the AC
90~45A limit of +0,6 nm for all approach operations,

Based on the analysis in this report the suitability of the LORAN~C
navigation system in the ocurrent National Airspace System environment has been

adequately demonstrated. No degradation in navigation accuracy or tunctional
performance was observed using the LORAN-C navigation system when compared to
the current VOR/DME system in the aircraft.
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1. INTRODUCTION

1.1 BACKGROUND

In 1977 the Vermont Department of Aeronautics presented the Department of
Transportation (DQT), Office of the Assistant Seoretary for Research and
Technology (forerunner of Research and Special Programs Administration (RSPA))
with an informal request for assistance in improving air access to the Statu's
low altitude airspace and airports, At that time 1t was noted that the inilux
of new businesses to Vermont communities was oreating a demand for improved
airline, air taxi and business airoraft services which could not fully and
efficiently Be met in view of limitations in navigation and approach aids,

With the exception of the international airport at Burlington none of the
state or privately-owned airports was equipped with either precision approach
or terminal area radar service, While eight of the ten stat: airports do have
Federal Aviation Administration (FAA)-approved non-precision instrument
approaches only three include Localizers, the remaining five relying upon
either Very High Frequency Omnidirectional Range (VOR) or Nondirectional
Beacon (NDB) approaches., The result is an unsatisfactory history of
cancellations or delays at all but Burlington. Even at Burlington weather
conditions often force arriving traffic to use runways other than the
Instrument Landing System (ILS)-serviced runway, in some cases requiring use
of cirecling criteria with their attendant higher minima,

Low altitude enroute and terminal area operations are hindered by high
terrain which interrupts line of sight signals from the FAA-provided VOR
system; in fact, at only four airpofts can a pilot utilize VOR signals below
about 3000 feet mean sea level,

In 1974 the State's Department of Aeronautics was made aware of the
potential of LORAN~-C to provide the navigation and guidance capability
necessary for operation in the mountainous terrain. In support of Vermont's
expressed interest, DOT/Coast Guard conducted a series of
demonstration flights over a period of a week in a LORAN-C equipted C-130
alreraft. Low altitude enroute, terminal area and approach operations were
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successfully demonstrated at a number of the mountain-bound airports, These
aotivities ultimately led to development of a formal request from the State of
Vermont to the DOT/Research and Special Programs Administration and to the
Transportation System Center (TSC) for mssistance in conducting an
operationally and scientifically oredible, extended evaluation of LOBAN-C Area
Navigation (RNAV) with a view to complementing the existing. system of
government-provided aids and procedures and to removing some of the present
operating restrictions,

At present there are nineteen public-use airports within the State, one is
owned and operated by the oity of Burlington; ten are state-owned and
maintained but operated by Fixed Based Operators (FBO's) through leasing
arrangements; the remaining airports are privately owned., Two of the l
State-owned airports have been designated by the Civil Aeronautics Board (CAB) !
as "essential service®" airports. ‘
|

Four of Vermont's airports are currently utilized by the scheduled
airlines. Alr taxi and business aircraft operations are conducted with
growing frequency from almost all of the airports; however, boardings or
number of operations are not at a level sufficient to meet DOT/FAA coriteria
for up-grading of facilities, with the exception of Burlington International
Airport.

Recent developments in LORAN-C ground-bas¢d and airborne equipment couid
offer an opportunity to meet some of Vermont's operational and technical needs
within a reasonable period of time and without requiring major capital
expenditures.,

*An aircarrier, under a contract with the CAB, provides an essential service
airport with a specified minimum number .0f scheduled airline seats per week.




The aids to air navigation which are now in use by civil aviation have a
history of reliasbility and simplicity of operation which are well earned and
respected, Acceptance of LORAN-C RNAV by the generesl aviation community will
depend to a considersble extent on its ability to demonstrate similar
characteristics while at the same time offering significant advantages in
performance or capabilities partioularly appropriate to operation in the
Vermont environment, Appendix A describes LORAN-C signal charaoteristics,

Improvements in signal strength and position fix acouracy which resulted
from commissioning of the Seneca, NY transmitter and the Northeast LORAN-C
chain how permit reception from four transmitters at all of Vermont's airports
from ground-level to all operational altitudes, despite the presence of
mountainous terrain, with a repeatable accuracy suitable for non-precision
approaches to any runway, and fur development of new departure flight paths at
many alrports, In addition, low altitude enroute navigation would be made
less harzardous for both Visual Flight Rules (VFR) and Instrument Flight Rules
(IFR) traffioe.

The current FAA program to develop a relatively low cost LORAN-C RNAV
system 1s particularly timely as it will enable al) categories of General
Aviation (GA) to participate in the eventual benefits of LORAN-~C. Appendix B
presents applicable speciflcations of the low cost receiver study.

A major evaluation program was organized by TSC which brought together
teams from the National Aeronuatics and Space Administration's (NASA) Langley
Research Center (LRC), the FAA, and Vermuit's Agency of Transportation,
Together with these organizations, TSC developed test and management plans,
measurement criteria, ground and airborne test instrumentation subsystens,
data gathering and reduction strategies, and assigned responsibilities
necessary to measure and document the capabilities and limitations of LORAN-C
RNAV.




Considerable effort was expended from the outset to establish the actual
performance of the ground reference system, the proper integration of the data
gathering instrumentation, the time correiation of the inputs of alil
subsystems which could have an effect on the conoclusions reached in the test,
and requirements for the data reduction software at LRC.

In consequence a very demanding technical load was placed on NASA's
sclentific team both in the laboratory at Langley Research Center and at the
test range at Wallops Island, VA whioh was carried out in a highly
professional manner, A major gonsideration addressed by the engineeoring team
was confirmation that all uncertainties in equipment behavior, (ground truth
system operation, software, eto,) were eliminated prior to commencing the
formal data gathering effort, a problem which has plagued previous LORAN-C
RNAV test projects, More than 72 hours of flight time were expended in this
area,

1.2 PROGRAM OVERVIEW

The principal objective of the Vermont LORAN~C RNAV program was to
determine the functional, technical and operational suitability of the low
frequency radio navigation ald to meet the needs of civil aviation in the
Vermont environment., A necessary element of this determination was the
acquisition of independently gathered ground and airborne measurements taken
over an extended period of time so as to include, to the extent possible, all
expected variations in natural physical phenomena commonly experienced in air
operations and likely to affect signal propagation, airborne system
performance, pilot workload or interaction with the Air Traffic Control (ATC)
system.

The principal measurement tasks included:

1. Acquisition of a statistically significant number of quantitative and
qualitative measurements of the airborne RNAV system's behavior,

2, Validation of system accuracy through use of a very preclse (10 meters, 2
drms) ground-reference system,




3. Assessment of unique operational and procedural requirements with
particular interest in identification of any which could adversely affect

pilot workload, acceptance by the ATC system, or flight safety,

§, Accumulation of GA pilot system-acceptance data.

3

5. Acquisition of LORAN-C signal characteristic data at four ground
facilities,

6., Compilation of an archive of mioteorologiocal data for the period of the
evaluation program,

The alrborne operations were planned to span a period of approximately 18
calendar months., Three separate but related flight evaluation programs were
completed during the project, The first involved approximately 32 flight
hours of acouracy testing by the FAA'S Technical Center utilizing a Convair
580 alrcraft equipped with two LORAN-C systems: a Teledyne Systems Company
high-price-pange TDL-424 unit and second a TDL-7171 mid-price unit curtently
used for offshore operations by over 500 helicopters, Neither of these
systems was instrumented to suppiy command guidance information to the
aireraft pilot, The CV-580 flight program was under the direction of a FAA's
Technical Center Project Englneer who also had resgpgnsibility for reporting,
separatly the results of the FAA effort,

The second flight evaluation program, conducted under the direct
supervision of the TSC Program Manager, utilized a twin-Beech E50 aircraft
owrnied and operated by the State of Vermont. The E50 was equipped with a
single Teledyne Systems Company TDL-711 unit and was scheduled to fly
approximately 100 flights (totaling 200 hours), distributed across the
following activities: equipment check out, tralning, acquisition of
performance data, development and evaluation of procedures, determination of
pilot workload and system acceptance, and identification of potential ATC
interface problems. The TSC/Vermont flight test team successfully completed
104 flights and 226 hours of LORAN-C RNAV operation,
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The LORAN-C RNAV system in the E50 was inatrumented to provide command
asteering information to the pilot through a dedicated Course Deviation
Indicator (CDI) and this configuration was regarded as the "primary mode! of
operation,

The third flight evaluation activity was added to the project about
halfway through the program, A Cessna 210 aircraft belonging to a loocal alr
waxi operatoer, The Airmaster, Inc,, was equipned with a TDL-711 system. This
aircraft was also equipped with a dedicated CDI on the pilot's instrument
panel, The alr taxi operator was requested to evaluate the system during its
routine charter operations, Two of the operator's regular pllots were trained
to use the equipment and were asked to keep notes on their experiences, A
total of 450 hours of successful enroute LORAN-C RNAV evaluation was
accomplished during an eight month period, The LORAN-C evaluatlon flights
reduced expenditures for fuei and operating costs ranging from 7 to 16
percent, with an overall average of 6 percent,

In summary this report documents the results of more than 676 hours of
successful airborne LORAN-C experience geined during the period July 1979 -
March 1981.

1.3 PROJECT ORGANIZATION

Three federal government organizations (DOT's RSPMA, FAA, and NASA) and one
State organization (Vermont's Agency of Transportation) joined foreces to plan
and to successfully execute the LORAN~C evaluation program, Within the DOT
the RSPA had overall program cognizance.

The Transportation System Center was designated by RSPA to assume
responsibility for program management, design of experiments, provision of
soite of the ground and airborne equipment, basic field measurements, data
analysis, industry briefings, public relations and preparation of reports,
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The LRC of NASA designed, fabricated, installed and ocalibrated the
successful data collection instrumentation installed in the Vermont Beech E50
airoraft and provided a second system in a ground-based instrumentation
trailer situated throughout the program at the Burlington Airport (BTV). This
latter unit was operated on-line continuously from July 1979 until November
1980, The alrborne and ground-based data gathering installations included
NASA-designed and fabricated microprocessors which controlled, formatted aad
recorded data on magnetic tape, Langley personnel also prepared software
necessary to process and evaluste the information collected by the Beech
aircraft and the instrumented trailer, LRC was a partner in evaluation of all
data gathered by the Beech E50 aircraft,

The FAA participation in the program involved four of its organizations:
the Systems Research and Development Service (SRDS); the FAA's Technical
Center at Atlantic City; the New England Regional Office (NERO) in Burlington,
MA; and the Air Traffic Service, in particular the tower and IFR room at
Burlington, VT and Center personnel assigned to the Baston Center,

SRDS was responsible for planning and coordinati:;; wtsivities with the
FAA's Technical Center; it alse procured and supplivd the Remote Airhorne
Precision Positioning System (RAPPS) and monitored progress of the CV-580
flight program. The RAPPS provided the CV-580 with a ground reference to
evalualie LORAN-C RNAV performance, FAA's NERO was tasked to design
non~precision LORAN-C approaches to eight runways at five airports, to review
the performance data as it became available, and subsequently to determine thz
acceptability of applications for Supplemental Type Certificates (STC's)
submitted by the State on its request for authgrization to operate LORAN-C
RNAV in the Cessna 210 and Beech E50 aircraft,

ATC personnel located in Burlington, VT and Boston Center repeatedly
assisted the project by accommodating requests for special LORAN-C flights
during the 18-month test period.

)




Vermont's Agency of Transportation was an active partioipant throughout,
supplying test aircraft, conducting engineering surveys of sclected locations,
coordinating use of facilities throughout the State, supplying flight crews,
alroraft and avionics maintenance personnel, and developing new procedures and
experimental approaches wheire it was inappropriate to ask for FAA assistance,
Principal technical and operational support to the Agency was provided by
Polhemus Associates, Inc. and Air North, Ine., both Vermont companies.

1,4 SUMMARY OF ACTIVITIES

The Vermont LORAN-C Flight Evaluation Program officlally commenced in FY
1978: detailed planning was initiated by TSC in June 1978. The Vermont Beech
E50 was acquired for this program by the Agency of Transportation in fall 1978
and modified to receive the test equipment during the winter of 1979, NASA
completed installation and check out of the data gathering instrumentation in
the spring of 1979 at Wallops Island., The data acquisition phase officially
began in July 1979 although much of the first five months of flying was
devoted to training, debugging of system software, and check out of the ground
reference system, Acquisition of LORAN-C ground monitor data began in July
1979 and continued through October 1980.

Between mid-July 1979 and mid-October 1980 the Beech E50 completed 104
flights, tot=lling 226 hours of LORAN-C RNAV data acquisition in the following

areas:

Categories No. of flights
1. Pilot Training Yy
2. Ground Reference System
Verification 7
3. Cross Country y
y, Project Photo-Documentation 3
5. Abort-Aircraft Malfunction 1
6. Aircoraft Functional Check Flight 2
7. Demonstration 21
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During this period four ground-based monitor units (LORAN-C receivers
interfaced with tape recorders) acquired extensive data describing various

sigrial parameters, The number of days of acoumulated data were:

Site 1,
Site 2,
Site 3,
Site 4,

Weather data were acquired for the period of the test from the Burlington

Procedures Development
Data Collection and Documentatian

TOTAL

Burlington Airport (NASA Trailer)

Burlington
Rutland
Newport

n

"

"

(Air North Hgr)

16
46

104

168
193
120
131

T ——— S —r—

days
days
days
days

Airport Meteorological office of the National Weather Service,

U.S. Coast Guard (USCG) data describing Northeast chain transmitter
availability and records of phase adjustments made by monitor units or the
Master at Seneca for the period of the evaluation program were acquired and
later compared with the ground and airborne measurements described above.
Periods when any trgnsmitter was not available for navigation were included in

the reports. A summary of relevant transmitter information appears in Section

2.3.

This data
included plots of temperature, atmospheric pressure, relative humidity and
windspeed gathered at six-hour intervals throughout the day.




f=resas

[ ard Rt S A SRS

S et

P EN

2. TEST RESULTS

The ovarall goal of the Vermont test program was to (enerate a
comprehensive data base of technical and operational experience with LORAN-C
as an alr navigation system, Three specific objectives are discussed: Section
2.1 reviews the primary objective of the test program; Section 2.2 discusses
operational and procedural requirements for routine use of LORAN~C in the
National Airspace System; Section 2.3 describes LORAN~C signal characteristiocs
as observed within the State of Vermont during the period of the project,

2.1 FLIGHT DATA AGCURACY TEST RESULTS

This section (2,1) provides an overview of the program; among the items
included are definitions of errors, descriptions of the airborne test beds,
parameters measured, procedures for data processing, methods used in the
analysis and a presentation of the results of the analysis.

Two aircrafts were used to estimate the achievable accuracy of LORAN-C
when used as an RNAV system: a Twin Beech E50 supplied. by the State of
Vermont and dedicated full time to this program; a Convair CV-580 supplied by
the FAA's Technical Center and used for both enroute and approach accuracy
measurements. The first E50 LORAN-C evaluation flight in Vermont was
conducted on July 24, 1979; the last evaluation flight was completed on
October 15, 1980. The CV-580 aircraft made several trips to Vermont during
this time period.

During the first five months 34 flights were flown by the E50 for system
integration and checkout, pilot training, ground-truth systems verification
and the subsequent modification of the performance of the TDL-711
Micro-Navigator software., In December 1979 the system checkout was completed
and no further modifications were made to the LORAN-C navigation system
software, The subsequent ten months were used for data collection -~ seventy
flights were flown during this time period.
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The standard against which results from the LORAN-C flight tests were
compared was derived from the accuracy requirements described in FAA Advisory
Cirocular 90-45A titled "Approval of Area Navigation Systems for use in the
U,S. National Airspace System", Several data acquistion requirements evolved
from the certification criteris of this document: first, tota) system error
must be calculated; second, the error contributions of the navigation system
must be measured; finally, the value of the pilot's contribution to the error
budget must be measured.

The edvisory circular specifies error boundary (2 sigma) values for each
of the three principal flight regimes: enroute, terminal (the instrument
departure from the runway to the enroute airspace and, later the arrival or
transition leg from the end of the enroute segment to the start of approach at
initial approach fix), and approach (the final non-precision approach to
runway threshold or the missed approach point at the airport runway).

During the data collection period the Beech E50 completed 169 enroute, 105
terminal or transition segments, and 215 non-precision approaches. Visual
observation of the cross track and along track errors was made on every
approach segment and, weather permitting, on all transition and enroute
segments, Precision measurement of the errors was made ‘on segments }rom 33
flights which included 66 enroute and 101 terminal segments and 76
non-precision approaches. More than 46,700 measurements of the E50's position
were evaluated in quantifying accuracy of the LORAN-C RNAV system.

2.1.1 Error Definition

FAA Advisory Circular 90-45A sets forth RNAV error-budget critera as
follows (See Figure 2.,1~1):

Along Track Error (ATE) ~ A position error along the desired track
resulting from the error contributions of both the airborne and the ground
equipment,

1
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Cross Track Error (CTE) - A position error measured perpendiocular from

the desired track to the actual position of the alreraft. This error includes
the error contributions of the airborne and the ground equipment,

Flight Technical Error (FTE) ~ This error refers to the accuracy with which the

pilot controls the aircraft as measured by his success in nulling deflections
of the Course Deviation Indicator (CDI)., It does not include blunders which
are procedural errors which have gone unnoticed and result in the aircraft
eXceeding the airspace boundaries., For this test program the boundaries were
given in AC 90-U45A: +2.5 nm for enroute segments, 41,5 nm for terminal
segments and +0.6 nm for non-precision approach segments (all are two sigma,

95 percent, values).

Total System Along Tracl (ISAT) Error -~ This error is the ATE and by
definition does not include a contribution from FTE. |

Total System Cross Track (TSCT) Error - This error is calculated as the

root-sum-squares of FTE and CTE.

All the errors were processed as absolute (i.e. magnitude of) deviations
from a point on the route centerline., For ATC planning purposes, separation
of routes are based on route centerlines and not on achieved mean nerformance.
Increases in the cross track error due to bias from the centerline arz thus
included in the overall description of achieved performance. When specifying
linear accuracy, or when it is necessary to specify requirements in terms of
orthogonal axes, the convention adopted in the Federal Radionavigation Plan
(FRP) as the 95 percent confidence level will be used.

When two or three dimensional accuracies are used, the 2 drms
(distance~root-mean-squared) uncertainty estimate will be used. Drms is the
square root of the sum of the squares of the one sigma error components along
the major and minor axis of a probability ellipse. Values of drms such as 2
drms are derived by using the corresponding values of sigma. There is a range
of values of probability associated with a single value of 2 drms. The
variation is not large but it ranges from 95.4% to 93.2% as a function of the
ellipticity. The ellipticity is defined as the ratio of sigma1 to Sigma2.
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Three main sources of error contribute to the navigation system error
value - the LORAN-C radiated signal, the ailrborne LORAN-C receiver equipment,
and the area navigation equipment, Each of these three main sources are
actually composite values including contributions from various factors, For
example, the radiated signhal errors include propagation errors as well as
errors in the transmitted signal.

The navigation system error is the difference between the LORAN-C
indicated position of the airecraft and the precision reference system (actual)
position of the aircraft at any instant, This navigation system error is then
resolved into cross track and along track components.

2.1.2 Test Environment and Equipment

The State of Vermont is situated within the coverage area of the Northeast
U.S. LORAN~C Chain (GRI 9960). The primary triad: for the test flight program
included the master station at Seneca, NY (M), a secondary station at Caribou,
ME (W) and another secondary at Nantucket, MA (X). The alternate triad for
the test program included the master station at Seneca, NY (M), the secondary
transmitter located at Nantucket, MA (X) and a secondary transmitter located
at at Carolina Beach, NC (¥). The geographic relationships of the operating
area and LORAN-C chain are shown in Figure 2.1-2., The Beech E50 aircraft
operated out of Burlington International Airport Vermont vhich coincidentally
lies on the base line between transmiters M and W. The difference in time of
arrival of the RF pulses, MW and MX, are referred to as TDA and TDB lines of
position (LOPs) throughout this report. The intersection of two or more LOPs
defines a position Iix and the angle of crossing of the two LOPs establishes
the Geometric Dilution of Precision (GDOP).

The LORAN-C RNAV system installed for flight evaluation in the CV580,
Beech E50, and Cessna 210 was the TDL-711 Micro-Navigator dgveloped by
Teledyne Systems Company. As shown in Figure 2.1-3, this system consists of
an integrated control and display unit (CDU), a combined receiver and computer
unit (RCU), an antenna with integral coupler, and a course deviation indicator
(CDI). 1In addition, a higher priced military system, the TDL-424, was
installed in the CV-580 for comparative evaluation. Detailed characteristics

1
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of the TDL~711 are provided in Table 2.1~1. The principle difference in the
test equipment configuration between the E50 and the CV580 airoraft were in
the precision reference system and implementation of command guidance output
data, Figure 2,1-4 is a funotional diagram of the data acquisition and
reference system for the E50.

ﬁ The airborne instrumentation package in the E50 Beechoraft was designed,
fabricated, and installed by the NASA LRC, Flight check of the installation
was made at NASA's Wallops test ranges prior to deployment of the E50 to
Vermont. Analysis of the measurements taken at Wallops confirmed that the
precision reference system provided a ranging accuracy which met the
manufacturer's claim of 10 meters (2 drms). In Vermont the transponders of
the ranging system (Motorola Mini-Ranger) were installed at existing surveyed
radio facilities located on mountain peaks east of Burlington. Their
orientation was designed to provide a minimum of two range measurements at
four of the Vermont airports incorporated in the program plan as well as much
of the enroute airspace in the northern third of the state.

B S =

Th«# range-tracking subsystem instailed in the CV-580 shown in Figure 2,1-5
used a conventional Distance Measuring Equipment (DME) beacon to obtain range
measurements from commissioned or portable ground units. The Remote Airborne
i Precision Positioning System (RAPPS) was calibrated at the FAA's Technical
Center in Atlantic City, NJ. Using the Nike Hercules Radar Tracking system as
the standard reference and four commissioned DME ground stations for range
measurements, a two sigma range error of 188 meters wés calculated without
removing range bLiases, After removing the range bias for each of the DME
ground stations, the aircraft position was recomputed to obtain a two sigma
range error of 156 meters. '

The NASA LRC supplied a fully instrumented trailer, which was based at
Burlington, for the dual purposes of recording ground data and of supporting
the data acquisition system in the Beechcraft. It also contained a TDL-T11
navigator, an Austron LORAN-C receiver, an Omega receiver, a rubidium time
standard and various control recording and display equipment (Figure 2.1-6).

PR A 75 b ¥
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TABLE 2,1-1, TDL-711 LORAN-C MICRO-NAVIGATOR CHARACTER{STICS

NAVIGATION SYSTEM

Mode
Grid Reference (operator
selected)

North Referenca
Waypoints
Display Resolution
Distance/Bearing to Waypoint
Estimated Time Enroute/
Ground Speed
Cross-Track Distance/
Desired Track
Track~Angle Error/Ground
Track
Offset (input)/Magnetic
Variation (input)
Repeatable Accuracy
Left-right Steering to CDI

Great Circle

Lat/Long (0.1 min)

Time Difference (0.1 usec)
True or Magnetic

9 (non-volatile)

0.1 nm/1 deg

0.1 min/1 kt

0.01 nm/1 deg

1 deg/1 deg

0,07 nm/1 deg

Better than 0.1 nm
1.25 nm full scale

LORAN=-C DATA

Area of Operation

Two LORAN-C Triads

General Exceeds RTCA D0~159
Type III Requirements

Acquisition Automatic

Velocity Envelope (unaided) 0 to 950 knots

Master Independent Automatic

ENVIRONMENTAL

Operating Temperature -55° to 55° C

Altitude (unpressurized)
Power

20,000 feet
18-32 VDC, less than 40 watts

PHYSICAL
Receiver Computer Unit
Control Display Unit

Antenna

.62H x 7.50W x 12.58D in

1.0 1b

.50 x 5.75W x 6.50D in
5 1b
5

51
6.5H x 2.5W x 10.0D in

7
1
4
4
1
0.5 1b

Ol e
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FIGURE 2.1~4. NASA AIRBORNE DATA ACQUISITION AND REFERENCE SYSTEM
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FIGURE 2.1-6. NASA GROUND-BASED DATA ACQUISITION SYSTEM
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The State of Vermont conducted a second-order survey of all transponder
locations and calibration points at the five test plan airports, using b&nch
marks verified by the National Oceanic and Atmospheric Administration., The
survey was referenced to the North American Datum of 1927 and converted by TSC
to the World Geodetic System of 1972, This common coordinate reference system
was used for all subsequent data processing and analysis.

2.1.3 Data Collection and Processing

The data acquisiton package in the E50 included an incremental recorder
triggered once every 0.9 seconds to receive up to 33 discrete variables
generated by the TDL-711 (Table 2.1~-2), the precision reference system, the
Austron time-code generator, and an altitude sensor in the instrumentation
package,

The data acquisition located in the trailer was designed to operate in a
similar manner, recording similar parameters from the TDL-711, and Greenwich
ime from a rubidium time standard referenced to a WWV signal.

In addition to the automatically recorded data described above the pilots
and flight test engineer were¢ required to complete several forms: Flight
Profile Summary, Test Engineers Log, Test Activity Breakdown, Waypoint Log and
Flight Log as well as an informal log or set of notes. The flight test
engineer also had access to a voice-activated recorder to augment his written
notes., A Mission Complete Report was prepared for every flight and submitted
with data tapes to NASA and TSC for subsequent review and evaluation. The
automated data acquisition was augmented by visual observations by the test
engineer of cross and along track errors over each navigaton aid (NAVAID)
facility when weather permitted, as well as at the threshold of each runway

upon completion of non;precision approach,

Following each flight NASA LRC processed the airborne data recorded in the
Beecheraft and prepared an X,Y plot of the flight profile, a scatter plot
summarizing errcr data and an abbreviated (10 variables) data print-out.

These data were then forwarded to the TSC and the flight test engineer for
review, The X, Y plot provided a ground trace describing the airecraft's route
of flight as determined by the LORAN-C system. Whenever Mini-Ranger data was
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TABLE 2.1-2. LORAN-C PARAMETERS RECORDED INFLIGHT

EQUIPMENT AND SIGNAL STATUS

e Triad track status

e Signal to noise numbers (M,A,B,C,D)
e Envelope number status

o Current triad in use

® Track flag status

PILOT DISPLAY INFORMATiON

CDU Annunciator lamp status

CDU display contents

Current from/to waypoint

Decimal points and Tamps status
CDI indication (crosstrack error)
Blink status

CDI flay status

CONTROL SETTINGS AND MEMORY CONSTANTS

@ Function selector switch position

¢ Hold flag status

o Current offset

o Latitude and Tongitude of current waypoint
o Magnetic variation

o Area calibration values

OTHER RELEVANT INFORMATION

® Time (hours, minutes, seconds)
Distance to waypoint

Ground speed

Time differences (A,B)

o Current location (L/L)

e Mini-Ranger data

23
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available a second trace was plotted representing ground reference system's
indication of the airoraft's position. The origin of the X, Y plote coincided
with the coordinates of the calibration site at BTV and the axes were aligned
in a True north-south, east-west u.-ection. The profile plot was then
annotated from in-flight notes and validated. The enroute, terminal and
approach segments were identified and the work sheets returned to NASA for
complete processing of the flight measurements resulting in a report of the
following statistical information:

1., Coverage plot for the ground reference system
2. Flight X, Y profile plot of the LORAN-C measured geographic position
3. Cumulative probability plots:
Along track error by phase of flight
Enroute
Terminal
Approach
Flight technical error
Enroute
Terminal
Approach
Cross track error
Enroute
Terminal
Approach
Total system cross track error (measured)
Enroute
Terminal
Approach
4, Statistical summary chart
5. Scatter plots

A typical flight profile plot and a scatter plot are shown in Figures
2.1-T7 and 2.1-8.
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FLIGHT # BTV 023
AVE DELTA X = .0658 SDX = .0382
AVE DELTA Y =-.1102 SDY = ,0337
AVE Z = ,1333 SDZ = .0361
Y = NORTH, X = EAST
0,0 Reference System Position
2 drms = 0.10 nm




Each point on the scatter plot (1 every 0.9 seconds) represents the
position of the aircraft as determined by the airborne LORAN-C navigator; the
origin is the position determined by the ground reference system, The vector
difference is the error (Z) which was resolved into components along the north
(Y) and east (X) axis. On each flight the average X,Y, and Z values and
associated standard deviations were calculated as shown here for Flight 023.
When the vector is resolved into components along and perpendicular to desired
flight path the components become ATE and CTE. The navigation system error,
as indicated in Section 2,1.1, is a composite of many errors including
variation in the transmitter output, effect of propagation anomalies, survey
error, local grid warpage and errors due to the aircraft motion during the

recording interval., Some of the individual errors will be quantified in
following subsections; however the 2 drms error of Figure 2,1-8 is 0.10 nm,

which is significantly smaller than the value specified by AC90-45A, eg 0.U45
nm for the approach segment. The scatter plot is representative of the 31
plots analyzed during the test program.

A similiar scatter plot was made from the data collected in the trailer,
Each point on the scatter plot (measurements taken once every minute)
represents the position of the antenna located on the hanger roof adjacent to
the trailer as measured by the LORAN-C navigator; the coordinates of the
origin of the plot corresdpond to position of the antenna as determined by
ground survey. The difference between origin and recorded position is the
LORAN-C error caused by uncorrected propagation effects, ete. and has similiar
composite characteristics as the airborne navigation system error excluding
errors caused by aircraft motion during the recording interval. The data
preparation system is described in Figure 2.1-9.

2.1.4 Analysis Summary

The data were analyzed in several ways 8o as to demonstrate the
suitability of LORAN=C RNAV for operation in the NAS. The following tasks
were accomplished:
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ACTIVITY ORGANIZATION OUTPUT
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e Initial Data Langley Research Center Scatter Plot
Reduction Flight Profile

Flight Annotation

e Time and Event
Validation

o Final Data
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State of Vermont
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Transportation Systems
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Segment and Time Valida-
tion

Statistical Summary

Interpretation and
Aggregation

FIGURE 2.1-9.
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1.

2,

3.

T

10.

The 95 percent value of the various error categories was caloulated so as
to demonstrate compliance with performance criteria contained in AC90-U5A,

Error data taken from 33 flights were aggregated by flight phase into
single sets of numbers,

The measured value of TSCT was compared with the caloulated value for the
aggregated data, to reveal that the difference was not significant,

The relative significance of the value of FTE was determined for each of
the phases of flight. One flight was analyzed to determine: "To what
extent does the pllot's FTE value decrease a3 he approaches the runway
threshold?"

The ground and airborne error data were separated into random and bias
errors, Calculations were made of the 2 drms value of the random errors
and related to their CTE and ATE, components and subsequently compared
with relevant criteria in AC90-U5A.

The bias errors of the flight data were compared with the bias error of

ground data to demonstrate that both sets have common seasonal
characteristics,

The visual estimates of cross track error abeam runway threshold completed
for each non-precision approach were analyzed with respect to runway true
heading and azimuth of TD LOPs as a cross check against calculated values
of grid bias,

Error signifisance tests were completed to disclose the presence, if any,

of differences in performance between day and night operations.

Comparisons were made of varlations in the TD values for the secondary
transmitters W and X, as a function of seasonal changes.

Significange tests were performed to determine differences in system

performance as a function of direc.'on of flight.
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11. Extended flights were made to show that the test results were not
restricted to Vermont; i,e,, the conclusions reached are valid throughout
the LORAN-C coverage area,

12, The pot( usial of differential LORAN-C system was evaluated
to show a slight improvement in CTE and ATE could be realized from its use,

FTE, CTE, ATE, and TSCT were plotted as cumulative error distributions.
The 95 percent error values for this distribution were then determined.
Figure 2,1-10 presents a plot of the cumulative error distribution, Each
flight (33) which was flown within the precision test range was analyzed by
this method,

2.1.5 Results and Conclusions

This section describes the results obtained from evaluation of the flight
tests conducted in the Vermont E50 alrcraft. The statistical conclusions
relate only to those fiights or flight segments where the aircraft operated
within range of the ground truth system. Measured performance was shown to
exceed the minimum requirements specified for area navigation in FAA Advisory
Circular 90-U45L for all phases of flight. Signal reliability for the 104
flights was determined to be 99,7 percent, The receiver was not affected by
any noise sources found at either the medium size or small airports in Vermont
or communities in other states into which the aircraft operated. The LORAN-C
measurement demonstrated a long term skability (e.g., relative insensitivity
to seasonal changes) of ,06 nm peak to peak. The LORAN-~C RNAV system was
found to be satisfactory for non-precision approaches at all test site
airports once the runway threshold latitude and longitude coordinates were
verified. Accuracy was further improved by inserting locally measured
parallel offset values, It was concluded that the LORAN-C transmitter signals
and the airborne navigator meet all relevant criteria for RNAV throughout the
area of operation.
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2,1.5.1 Enroute, Terminal and Non-Precision Approach Operations - For this
evaluation program the enroute segments which conneoted two airport terminal
areas were defined as legs of at least 15 nm and generally were 30-40 nm,
Terminal segments include both the departure leg and the transition segment
from enroute airspace to the initial approach fix, The approach segment,
connects the initial approach fix to the runway threshold on the missed
approach way-point,

During vre ~¢st period from December 5, 1979 to October 15, 1980, 66
enroute segments were completed within the precision test range., A total of
29 flights were analyzed for compliance with the accuracy requirement of
AC90-454, In all error categoyies, the values of FTE, CTE, TSCT and TSAT were
determined to be substantially less than the values stated in the advisory
docunent, Table 2.1-3 lists the aggregate of the 29 flights, The mean TSCT
plus two standard deviations about the mean value 1s 0,73 nm as compared with
an AC90~45 performance requirement of 2.5 nm., This value was determined from
a population of more than 45,000 measurements, The major contributor to the
error was Flight Technical Error, a reflection of the ability to null the CDI;
vhe FTE value 18 0.77 nm and is also much smaller than the allowed value of
2.0 nm, Evidence that the pilot could null the CDI is documented in the
approach segment analyses. Provision of an auto-pilot might have led to a
significant reduction in this component of error., For this project it was
Judged to be unrealistic to demand performance in the enroute phase similar to

that which was sought during approach.

One hundred five (105) terminal segments (25 flights) were flown on the
precision test range. These segments wers analyzed for compliance with the
requirements listed in the advisory document. In all error categories the
values of FTE, CTE, TSCT and TSAT were determined to be less than those
allowed by AC90-U45A for terminal phase operations. Table 2,1-4 lists the
aggregate of all the flights, The mean TSCT plus two standard deviations
about the mean value was determined to be 0.60 nm, More than 22,000
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measurements were considered in this determination, The result is less than
half as large as the allowed value of 1,5 um. Again the major contributor to
the reported 0,60 nm was an FTE of 0.58 nm. Note that the measured value for
equipment error was only 0.16 nm whereas the "allowable" equipment performance
value is 1,12 nm,

During the test period 76 approaches were flown cn the precision test
range, Table 2.1-5. Scheduled approaches were made to 8 runways at four
difrerent airports: Burlington International, Barre-Montpelier, Morrisville,
and Newport. In addition, an imprompt approach was developed for Franklin Co.
Airport, Data from the flights were analyzed for compliance with the
requirements in AC90-45A, Table 2.1-5 lists the data from 31 flights, The
mean plus two standard deviations value of TSCT was 0,32nm This value was
determined from a population of more than 17,000 measurements and is compared
with the AC90-45A Advisory Circular value of 0.6 nm, Again, the major
contributor to the TSCT error value is a FTE component of 0.28 nm. The
allowed value is 0.5 nm, In contrast the measured value for equipment error
was 0.15 nm.

Visual estimations of cross track error reported for 272 approaches to
thirteen runways at nine airports are summarized in Figure 2.1-11. None of
the error estimates for the 272 approaches completed during the 16 months of
operation exceeded the AC90-U45A performance limit of 0.6 nm. Over half of the
approaches were completed with an estimated cross track error between 0 - 150
feet and eighty percent of the approaches were completed with an observed
cross track error measured at runway threshold of less than 300 feet.

2.1.5.2 Along Track and Cross Track Error. The possibility for error of
position in the airborne navigation system affects air traffic control in its
efforts to ensure safe, orderly and efficient movement of aircraft. The
performance criteria listed in AC90-45A reflects the ATC's input to the
development of a useful national KNAV capability. The ability of the LORAN-C
RNAV system to meet the specific enroute, terminal and approach performance
criteria of AC90-45A have been satisfactorily demonstrated.
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Tables 2.1-6 and 2,1~7 summarize these results in terms of ATE and CTE
(FTE excluded) and compares them with the requirements of the Advisory
Circular. The summaries illustrate the fact that the errors are essentially
independent of phase and direction of flight; there is no significant
difference beuvween the cross track and along track values, This is exactly
the result one wov™d expeot to observe from evaluation of a large number of
measurements taken from randomly oriented routes: a c¢ross track bias on an
approach to a particular runway would appear as an along track bias on an
approach to a perpendicular runway.

The measured navigation system equipment error (defined in Section 2.1.1)
is made up principally of bias error, and random error. The bias error 1is a
result of many factors including grid bias and local warpage. In addition
these errors contained components related to aircraft dynamics, the airborne
data gathering instrumentation, and small errors in exact knowledge of the
geographic location of the transpconders. Since these errors were relatively
constant it was possible to measure their values by flying a system
calibration routine within the reference system grid.

The aircraft was directed to fly a series of north-south, east-west legs
approximately 25 nm in length holding constant speed and track. The
procedures were repeated on several flights over a period of a month. The

airborne data wevre then processed so that biases in the recording system were
identified,

From the analysis it was clear that the recorded LORAN-C position lagged
the actual position of the aircraft by approximately .02 nm (122 feet). Table
2.1-8, the source of this error was the length of the interval between data
updates (<.9 second) and the averaging process used in presenting the flight
data. First the LORAN-C parameters were recorded, then the range measurements
from each antenna - top and bottom - were recorded: meanwhile the aircraft
was moving along its path at 150 knots,
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TABLE 2.1-6. LORAN-C ALONG TRACK ACCURACY

Flight Measured AC90-45A
Phase Mean Error Two STDs

Plus Two

STDs

(nm) (nm)

Enroute .13 1.5
Terminal .15 1.1
Approach .16 .3

TABLE 2.1-7.

LORAN-C CROSS TRACK ACCURACY

Flight Measured AC90-45A
Phase Mean Error Two STDs

Plus Two

STDs

(nm) (nm)

Enroute .15 1.5
Terminal .16 1.12
Approach .15 .33
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TABLE ?n 1"80

COMPUTATION OF THE MEAN ERROR IN POSITION

AIRCRAFT MOVEMENT WHILE RECORDING DATA

CAUSED BY

MEAN
DIRECTION OF ERROR ERROR ERROR]
FLIGHT CATEGORY (nm) (nm)
East ATE -,06 -.02
CTE -.05 0
West ATE -,02 +,02
CTE ~-,06 -,01
Combined ATE -.04 0
East and West CTE -,05 0
North ATE -,08 -,02
CTE -.04 0
South ATE -,04 +,02
CTE -.04 0
Combined
North and ATE -.06 0
South CTE ~.04 0
]Direction - Combined = AError
East ATE - Combined East and West ATE = -,02
West ATE - Combined East and West ATE = +.02

A (-) AError is more West than the mean value
of the combined directions [(~) More South]
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In a few instances transponders were repositioned after the site surveys
were completed to improve a units "field of view" resulting in small errors in
knowledge of position, The mean error in the knowledge of transponder
coordinates was determined to be in the 100 foot range. This error was not
caused by errors in the survey, but rather by incorrect estimates of direotion
and distance in repositioning of the transmitters, On two occasions
accumulations of ice coupled with high wind literally tore transponders from
their mounts. 1In both cases the units were reinstalled in more sheltered
locations but new range surveys or accurate measurements of the distance moved
could not be made because of the snow cover and other environmental
conditions, During the data processing activity and the analysis effort no
attempt was made to compensate for these small error sources.

The TDL-T11 system software is designed to partially compensate for speed
of propagation over land paths by assuming a velocity of propagation that i1s
slower than is used for seawater paths, The uncompensated portion of the
velocity term causes both TD values used for a fix to be a higher value in
microseconds, 0.3 to 0.4 microseconds, than would be the case if the paths
were entirely over seawater. The resulting latitude and longitude
calculations are therefore more west and south of the true position (by 200 to
300 feet) than they should be. This biag error is the principle source of the
errors in position, An estimation of the value of the bias error was made
with a linear regression analysis of the data collected in the instrumented
trailer. The analysis revealed a south and west mean bias of .03 nm and .02
nm, This bias is much less than the resolution of the displayed latitude and
longitude values (.1 nm) in the TD1-711 navigator. The magnitude of the grid
bias error appears not to warrent either an adjustment to the assumed
propagation velocity value in the navigator or compensation while processing
the data. The magnitude of the grid bias error for the secondary triad is
discussed in Section 2.1.5.6.

One more error source was evaluated. The temperature along the
propagation path affects ground conductivity which in turn has an effect on
" the propagation velocity. This effect is described in detail in Section 2.3.
The peak-to-peak variation was determined to be .06 nm; the period of the
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variation was one year. It may be possible to provide a simple first-order
grid compensation algorithm in the navigator which is valid for an entire
season. However, this error variation is also much less than the displayed
resolution in the TDL~711 and does not seem to warrant compensation,

There are additional second order effects on the propagation velocity
which would also be considered as bias errors but they have an order maghitude
smaller effect than the aforementioned errors. Therefore, investigation of’
these second-order terms was restricted to a summary taken from a review of

appropriate literature, (Reference 1 and 2).

Table 2,1-9 1lists 33 of the 104 flights and presents the computed 2 sigma
values of CTE and ATE for each phase of operation for each flight, except as
noted. The bottom line of the table shows the aggregate value and the
corresponding AC90-U45A value, Dashes are used to indicate the absence of
measured values, All the error values are seen to be within the 2 sigma
boundaries given in the circular, ’

Table 2.1~10 1lists those flights where either a single approach was made
or all the approaches flown were to the same runway. The 2 drms values and
the associated probabilities are to be compared with the 2 drms value of
AC90-45A. The first 11 approaches listed are to BTV RW15 and the 2 drms
values range from ,026 to .031 nm. The second group of approaches are to BTV
RWO1 and the 2 drms values range from .0U43 to .173 nm. The AC90-45A allowed 2
drms value is 446 nm with a probability value of 98.2 percent. As a final
comparison two flights with approaches to different runways have been
included. There does not appear to be any observable bias error in the
approaches that would warrant compensation either in the navigation system or
in the data analysis.

2.1.5.3 System, Equipment and Flight Technical Error - The total system error
has been identified in Section 2,1.1 as a combination of TSCT and TSAT errors.
The TSAT is synonymous vith the ATE since FTE does not affect this component:
it is discussed more fully in Section 2.1.5.2. The TSCT error, which includes
FTE may be calculated by following the formulas in AC90-45A;: it may be
measured during flight. As shown in Figure 2.1-1, TSCT error is defined as
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TABLE 2.1-9. COMPARISON OF CTE AND ATE FOR ALL PHASES OF FLIGHT

P oA o

APPROACH TERM _ENROUTE

FLIGHT CTE ATE ot ATE CTE ATE
339"] t07 a09 - ol 008 008
340~1 .08 .04 .07 .13 .08 .04
340~-2 .30 12 - - 16 .08
346-1 .20 .14 14 J7 14 1
347"] 020 .]0 -]] 012 010 011
347-2 .26 .12 11 11 .10 .10
354"] o]g 016 015 o.l-l 01] 118
362~1 .09 1 .13 .10 .09 .09
021-2 .05 .12 .10 .15 .13 .07
023 .16 13 .15 15 .15 .04
024 .13 7 .16 a7 .39 .28
025 17 .19 .21 .06 A7 .15
045 1 .14 .10 .16 .12 .10
080-2 - - - - - -

081 .09 .12 .13 2 - -

109-1 .07 .09 - - 12 .13
109~2 .09 .12 .06 .03 .10 .06
113 .13 .28 .13 .13 .15 .04
116 .09 .07 - - .09 .02
127 2 .26 .16 14 - -

129 - - - - .08 .10
134 .08 .03 - = 12 12
135 .13 .23 .10 .06 .07 2
136 .08 .03 .07 07 .09 .06
141 12 .14 .12 .06 .08 1
163 .06 .08 .07 .06 .08 .08
165 .10 .28 .04 .10 .16 .26
169 .08 .03 - - 14 11
176 .14 .22 .04 .09 .05 .18
182~1] - - - - .03 .09
182~5 .07 .03 - - - -

189-1 .15 .18 .08 37 - -

189-2 1 .21 - - .54 .43
AGGREGATE* .15 .16 .16 15 .15 .16
AC90-45A .33 .30 1.12 1.1 1.50 1.50

*Mean Error plus two standard deviatinns.
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TABLE 201"100

PHASE OF FLIGHT

b e TR R R R RS W D o

COMPARISON OF THE 2 DRMS VALUES FOR THE APPROACH

FLIGHT APPROACH 2DRMS PROBABILITY
# # (nm) (%)
RW15 340-1 1 .032 97.7
134 1 027 98.0
136 7 .026 98.1
169 1 .028 98.1
182-5 1 ,031 97.4
RWO1 109-1 ] 043 96.4
165 1 173 97.4
176 2 136 97.2
189-1 1 112 98,1
189-2 1 .118 96.7
RW33 127 1 175 96.0
135 1 . 158 96.2
141 ] .103 96.8
RW17 340-2 1 144 95.7
MISC. RW's 339 6 .059 96.6
116 3 .074 97.9
AC90-45A .446 98.2
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the measured distance, perpendicular from the desired course, to the actual
position of éhe alroraft, Table 2,1-11 compares the calculated and measured
values of TSCT wrror by flight phase for those flight .segments which were
flown within the reference system, The measured values of TSCT error for all
three flight phases are seen to fall within the performance criteria of
AC90-45A, It is noteworthy that performance for enroute operations came
within 12 percent of meeting the AC90-45A oriteria for approach, It will be
shown that the major contribution to the TSCT error budget is chargeable to
flight techniocal (piloting) error.

Equipment error is defined in Section 2,7.1 as the navigation system
error, Inecluded in this component of the error budget are contributions from
the transmitter, propagation medium, airborne receiver and the area navigation
equipment, The error vector between actual airoraft position (as measured by
the ground-truth system) and the indicated position of the LORAN-C navigator
is defined as the navigation system or equipment error. When this vector is
resolved into its along track and cross track components they are identified
as ATE and CTE. Jf the vector is resolved into its north and east components
it is referred to as northing and easting error, In this report the following
convention is adopted: the errors are identified as ATE and CTE when related
to track, and X and Y when referenced to east and north, Table 2.1-12 lists
the X and Y errors for each flight completed in the precision test range.
Table 2,1-13 lists the mean X and Y errors for the ground station, The mean
error 1s a composite cf random errors and bias errors, With a joint anzlysis
of the ground data and airborne data one can separate the bias errors from the
random errors,

The use of a ground monitor to provide a correction fur bias error in
airborne equipment is referred to as a differential correction. Flight BTV
362 of December 28, 1979 was processed as.if it had been a differentially
corrected flight, The scatter plot illustrated in Figure 2,1-12 shows the
"before correction" situation. The bias errors were subsequently calculated
from the ground data then the flight tape was reprocessed and the calculated
bias error corrections were applied algebraically to the individual TDL-711
determined positions, The differentially corrected results are shown in the
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TABLE 2,1-11,

COMPARISON OF THE CALCULATED VALUE OF
TSCT WITH THE MEASURED VALUE

CALCULATED MEASURED A
TSCT (C) TSCT (M) C-M
REGIME (nm) {hm) (hm)
Approach
76 Segments
31 Flights . 320 294 .026
Terminal
1071 Segments
25 Flights .601 .564 .037
Enroute
66 Segments
29 Flights . 726 .681 045
APPROACH TERMINAL ENROUTE
AC90-~45A (nin) (nm) (nm)
Calculated
TSCT .60 1.5 2.5
Aggregate
Calculated
TSCT ,32 .60 .73
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TABLE 2,1-12. INFLIGHT NAVIGATION SYSTEM ERROR

CALENDAR MEAN X MEAN Y MEAN 7 NUMBER OF
DATE DAY (nm) {(nm) (nm) SAMPLES
5 DEC 79 105 ~,0388 ~,0456 ,0649 1984
? 6 DEC 79 106 ~,0090 ~.0674 1142 1207
f 6 DEC 79 106 0127 =, 1037 + 1366 1384
' 12 DEC 79 112 -,0536 -,093% 1215 4006
%, 13 DEC 79 113 -.0166 ~,0629 .0891 2706
} f 13 DEC 79 113 ~,0067 ~,0635 .0877 1 4515
L 20 DEC 79 120 0273 -,0956 1124 2114
it 28 DEC 79 128 0177 -,0850 .0937 2198
: 21 JAN 80 152 . 0589 -.0920 1142 2292
23 JAN 80 154 ,0658 -, 1102 .1333 2665
24 JAN 80 155 .0740 ~-.1304 1567 1235
25 JAN 80 156 .0760 ~-,1279 . 1559 2175
14 FEB 80 176 .0446 -.0811 1014 2717
; 21 MAR 80 212 .0397 -,1079 1192 464
%Z 18 APR 80 240 ~,0401 -.0800 . 1080 632
% 18 APR 80 240 -.0418 =,0592 0837 828
1 22 APR 80 244 ~,0544 ~-,0645 .1060 978
y 25 APR 80 247 -,0355 -.0633 ,0806 397
N 6 MAY 80 258 ~,0594 ~,0656 . 1253 296
# 8 MAY 80 260 -,0458 ~-,0521 0748 47
§ 13 MAY 80 265 -,0381] -,0513 0752 2216
14 MAY 80 266 ~,0510 ~,0526 0903 297
15 MAY 80 267 -.0301 ~.0569 .0695 3250
( 20 MAY 80 272 ~-.0442 -,05680 .0776 1430
' 20 MAY 80 272 -,0441 ~.0788 .0932
; 11 JUN 80 294 ~, 0271 -.0512 .0689 2007
é 13 JUN 80 296 -,0502 -,.0696 .1007 568
! 17 JUN 80 300 -.0379 ~.0691 .0886 261
| 20 JUN 80 307 -, 0482 -,0567 .0829 1243
i 30 JUN 80 313 -.0411 ~,0376 .0592 62
! 30 JUN 80 313 -,0247 ~.0550 .0654 199
7 JUL 80 320 -,0485 -.0540 1279 317
7 JUL 80 320 -.0180 -,0589 .0609 201
28 AUG 80 372 .0056 -.0409 .0657
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TABLE 2.1-13. GROUND~BASED NAVIGATION SYSTEM ERROR

MEDIAN MEAN X MEAN Y MEAY Z NUMBER OF
DATE DAY (nm) (nm) (nm) SHMPLES
23 AUG 79 1 -.0479 -.0294 0507 559
23 AUG 79 1 -.049] -.0267 0565 520
28 AUG 79 6 -.053] - 0250 .0588 401
3] AUG 79 9 -.0434 -.0353 0635 848
21 0CT 79 60 -,0432 -.0284 .0518 435
23 OCT 79 62 -,035] ~,0309 .0470 1744
8 NOV 79 78 -.0312 -.0424 .0528 1505
9 NOV 79 79 -,0318 -.0429 0535 737
19 NOV 79 89 -.0279 -.0313 .0480 806
3 DEC 79 103 -.0258 -.0406 .0487 1464
5 DEC 79 105 -.0219 -.0227 0322 1000
10 DEC 79 110 -. 0280 -.0338 .0440 1000
14 DEC 79 114 -.0104 -.0246 0272 78
22 DEC 79 122 .0076 -.0416 .0436 1620
29 DEC 79 129 -.0154 -.0177 .0197 922
14 JAN 80 145 - 0065 ~.0335 .0355 649
23 JAN 80 154 .0116 -.0458 .0479 653
28 JAN 80 159 .0130 ~.0503 .0521 925
5 FEB 80 167 .0127 -, 0479 .0505 663
20 FEB 70 182 -.0114 -.0304 .0350 1621
3 MAR 80 194 -.0052 -.0308 .0370 854
29 MAR 80 220 -.0285 -.0357 .0459 1648
21 APR 80 243 -.0382 -.0335 .0518 1000
10 MAY 80 262 -.0418 -.0294 0520 582
6 JUN 80 289 -.0438 -.0385 .0605 413
8 JUN 80 291 -.0449 -.0328 0560 188
7 JUL 80 320 -.0432 -.0312 0539 863
24 JUL 80 337 -.0433 -, 0325 .0565 784
1 AUG 80 345 ~.0426 ~.0305 .0527 159
14 AUG 80 358 -.0419 -.0349 0549 1262
3 SEP 80 378 -.0356 -, 0334 .0496 1591
8 0CT 80 13 ~.0304 -.0374 .0490 1229
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Scatter plot, Figure 2.1-13, The remaining bias error is caused by the bias
in the positions of the reference system (see Seoction 2,1.5.2). The mean
navigation error is reduced by .004 nm. The blas error is due primarily to
conductivity considerations which were shown to be small for the primary
triad, Examination of Figures 2.3-11 and 2.3-12 in Section 2.3 describes the
temporal veriation in TDA and TDB, It will be observed that the mean error in
TDA and TDB were at their minimum values at the time of this flight, in
December 79. However, even at the time of peak error (mid-June) the figures
show that the bias correction for the primary triad would by less than .06 nm,

The term flight technical error is used to describe the performance of
pilot (or autopilot) in keeping indicated cross track distance at or near zero
as evidenced by explicit readout of the cross trank distance readnut on the
CDU and out-of-null displacement of the command steering needle on the CDI,
The CDI is a command display which shows the pilot the direction to steer to
return to track., A scale factor switch was added to give the pilot the option
of selecting 1/4, 1/8, or 3/16 nm per dot. This offered sufficient
sensitivity to assist the pilot in making an approach wsith the inherent
accuracy of the navigation system. The Advisory Circular specifies allowable
values of FTE to be combined with measured CTE when determining TSCT error.

In all flights analyzed for the project, the measured FTE was less than the
allowed value. FTE performance was analyzed in detail on flight BTV 136
because seven consecutive approaches were made to the same runway BTV RW15
under essentially iderntical conditions. The initial approach waypoint is
located 9.6 nm from runway threshold. The error statistics were determined
for the seven approaches for the full 9.6 nm approach and then re-determined
for the final 4 nm, A significance test was performed to determine whether
the pilot's noticeably improved performance during the final four nm of the

approach could have happened "by chance".

‘The results of the analysis indicated that only once in one hundred trials
would one attribute the improved performance to chance, the remaining 99
occurances could be attributable to the stimulus of the approaching threshold.

The X, Y plots of the flight profiles for the seven approaches is shown in
Figure 2.1-14; the supporfing data is presented in Table 2.,1-14, It will be
noted that the CTE and ATE 2 sigma error values are essentially constant for
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both the 9.6 nm approach and the last 4 nm of approaches whereas FTE is halved
during the last 4 nm, Figure 2,1-15 presents a plot of mean FTE plus two
standard deviations about the mean for each one-~half mile increment along the
approach, The approach corridor is bracketed at plus or minus 0.6 nm with the
AC90-95A boundaries, The plot clearly indicates that as the pilot
increasingly directs his attention to the CDI, the FTE approaches zero.

2.1.5.,4 Diurnal Effects -~ Diurnal TD variations are temporal variations which
occur on a daily basis, These shifts might be caused by a variation of solar
activity or changes in humidity over the period of a day. In Section 2.3 are
plotted the TDA and TDB diurnal variations. From Figures 2.3-15 and 2.3-16 it
is evident that during the first twelve hours (GMT) the signals are very
stable; most of the diurnal yariation is seen to occur during the last twelve
hours of the day (coincident with daytime temperature changes). To verify
that the diurnal effect was not significant as regards performance of the
LORAN-C navigator two comparisons were made: The first compared the measured
CTE and ATE experienced on two approaches completed 4 hours apart on the same
day during the diurnally active period and to the same runway (BTV RWO1): the
second comparison was of the CTE and ATE values obtained from analysis of five
approaches to runway 15 at Burlington on different days and during two time
periods. The results obtained from the first comparison appear in Table
2.1-15: the 2 sigma error values of CTE and ATE for flights 189-1 and 189-2.
The approaches were to RWO1 at BTV, The two time periods, 1500 and 1900 fall
within the period of the most active TD variations. The 2 drms values were
calculated; no significant difference was established, In Table 2.1-15 were
presented the results obtained from the analysis of the five flights to the
Same runway, RW15 at BTV. The first group of three approaches were completed
between 1400 to 1800 hours (GMT) and the second group were completed during
the period 2100 to 0200 hours. A comparison of the 2 gigma CTE and ATE as
well as the 2 drms show no significant difference.

2.1.5.5 Seasonal Effects ~ There is a potential for change in ground
conductivity to produce significant variations in TD values, The variation of
TD value with season is described in Section 2,.3: the effect was determined
not to be significant. Table 2.1-16 is a comparison of five flights, All
flights made approaches to BTV RW15. The direction of CTE is normal to the
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TABLE 2,1-15, DIURNAL EFFECT ON TWO FLIGHTS ON THE
SAME DAY TO THE SAME RUNWAY

BURL INGTON CTE ATE 2drms | PROBABILITY
RUNWAY 01 (rm) | (nm) (nm) PERCENT
Flight BTV 189-1]
(1500 to 1700 hours) | .15 .18 .23 98,0

GMT
Flight BTV 189-2
(1900 th%100 hours) N 21 .24 97.0

DIURNAL EFFECT ON FIVE FLIGHTS DURING TWO TIME PERIODS
TO THE SAME RUNWAY

BURLINGTON
RUNWAY 15
Flight BTV 340-1 .08 .04 .09 96.9
Flight BTV 134 .08 .03 .09 96.4
Flight BTV 169 .08 .03 .09 96.4
(1400 to 1800 hours)

GMT
Flight BTV 136 .08 .03 .09 96.4
Flight BTV 182-5 .07 .05 .09 97.7
(2100 t8M$200 hours)

TABLE 2.1-16. SEASONAL EFFECTS ON CTE FOR APPROACHES TQ BTV RW15

FLIGHT SEASCM CTE

(nm)
BTV 340-1 Winter .08
BTV 134 Spring .08
BTV 136 Spring .08
BTV 169 Spring .08
BTV 182-5 Summer .07
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TDA LOP thus it is the most seniitive to changes in the propagation medium,
Major temperature changes along the propagation path, as for example deeply
frozen ground, cause the ground conductivity values to change. As noted
previously this change is very gradual and has a pariod of one year,

In any partiocular year the actual seasonal cycle of the ground
conductivity may differ significantly from the mean cycle which is the average
over many years, In fact the year-to-year conductivity variations cannot be
identified a priori without a 3-5 year base of data. In addition, there may
also be variations within a season in a particular year., The seasonal effects
observed at BTV are based on 18 months of data and may not represent the mean
seasonal effect.

Table 2.1-16 indicates that no significant change in CTE was observed in
the airborne data during three seasons evaluated,

2.1.5.6 Primary and Alternate Triad - The uncorrected accuracy potential of
LORAN-C depends on the physical location of the LORAN-C receiver within the
coverage grid. Small crossing angles introduce geometric errors as the
hyperbolic LOPs become more nearly parallel, Also, when operating along a
baseline extension small changes in TD's represent large distances and thus
navigation accuracy degrades correspondingly. To mitigate the potential
geometric error the TDL-711 receiver may be programmed to track four
transmitters including the master, arranged in two different triads, as
selected by the AREA switch. These triads can be from the same chain or from
two different chains., For the Vermsnt test the AREA One switch position was
programmed to select in the primary triad MWX of the Northeast chain while the
AREA Two switch position permits the pilot to select the alternate triad MWY
for use., In each case a fourth transmitter is being tracked as a back up; for
the Vermont test Carolina Beach (Y) was used as back-up to the AREA One triad
and Nantucket (X) was used as back up to AREA Two.

If during normal operations in the AREA One mode, the Master or one of the
secondary stations, W or X, discontinued transmitting the TDL-T11
automatically selected the transmitter in reserve, a procedure, identified as
master independence. The pilot is advised of this situation by a series of

56




Mﬂwuumw,wm;; i ERE T S g ey ST S

blinking decimal points on the CDU, This action indicates that the accuracy
may be degraded, A flight involving master independent operation is deseribed
in detail in Appendix C,

Because of the substantially longer ground path between the Carolina Beach
transmitter and Burlington VT, the MWY triad was relatively less accurate than
the MWX triad unless the TDL-711 was provided a calibration value,
Measurements were taken at three locations in Northern Vermont and a "one
time" BTV correction found to be feasible for the entire precision range and
an area of about 50 miles radius distance., When no correction was used an
error typlecally 2.,0' of latitude north and 0.5' longitude east was observed.
At the survey point these values translated to 2 nm and .35 nm respectively,
The major contribution to the error is the value of the constant used for the
propagation velocity and its effect on the TDC LOP at the survey point, The
TDC gradient at BTV is 1559 feet/microsecond and the bearing of the normal to
the LOP is 129O Table 2,.1-17 presents comparisons of measured AREA Two values
with surveyed values prior to introduction of calibration. Table 2,1-18 shows
the improvement in accuracy achieved after calibration, Two additional
measurements were made in flight. The pilot overflew a NAVAID while the
flight engineer compared present position with published coordinates for the
ald. After the flight the aircraft returned to the surveyed point and the
results were recorded. Results cbtained on two flights are shown in Table
2.1-18.

2.1.5.7 Supplemental Type Certificate Requirements -~ The state owned aircraft
was originally an Army Model U-8D., It was converted in April 1980 to an FAA
certifiable commercial Model E50, This action was taken in preparation for an
application for a supplemental type certificate, STC, permitting installation
and use of a Model TDL~T11 LORAN~C navigator. Since the Twin Bonanza
installation is so unique, and very few E50 type aircraft are in existance,
the application for STC will be for one aircraft only. However the
performance data described in this report and submitted in support of the STC
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TABLE 2.,1-17,

COMPARISON OF AREA 2 CALIBRATION VALUES

CALIBRATION LATITUDE LONGITUDE
FLIGHT POINT (deg, min) (deg, min)
BTV 045* Survey(S) 44 27,9 73 08.8
Area 2 44 29,9 73 08.3
A Area 2 - (S) 2.0 ~0.5
BTV 729*%* | MVL NDB 44 35,2 72 35.2
Area 2 44 37.2 72 34,4
A ﬁrea 2 -~ MVL 2,0 -0.8
BTV 189-2** MPV VOR 44 12.7 72 33,7
Area 2 44 14.5 72 32,9
A ﬁrea 2 - MPV 1.8 -0.8
*Ground Calibration -2,0 min, latitude
**Air Calibration 0.5 min.longitude

TABLE 2.1-18. RESIDUAL ERROR AFTER USING A CALIBRATIGN V
AREA 2 MODE R N VALUE IN THE

CALIBRATION % LAT 4 LON
FLIGHT POINT min) {min)
BTV 045 Survey 0.1 .05
BTV 169 Survey 0.3 -0.2

Calibration values used were -2.0 min. iatitude
and 0.5 min. longitude.
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would be pertinent to any other application, The process for obtaining an STC
is outlined in Figure 2.1-16., The accuracy data from the flight test in
Vermont is the substantiating data indicated on the flow-diagram. The
procedure for a second applicant with a 711 in an E50 is outlined in Figure

2,1=17. The recipient of the certificate would be the State of Vermont in
this case,

The TDL-711 has already been granted one STC by the FAA, It is for use in
a helicopter (BELL MODEL 212) while flying enroufte in the Gulf of Mexico.
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2,2 FLIGHT PROCEDURAL TEST RESULTS

The seocond objective of the Vermont LORAN-C test program was to identify
and evaluate the procedural impact of LORAN-C RNAV on oivil aviation.
Procedures studied include those related to both the pilot and the air traffioc
control system., It is necessary to investigate the effeot of LORAN-C RNAV on
flight and ATC procedures to determine its compatihility with the current

National Airaspace System (NAS) and with requirements of the demanding aspects
of single pilot IFR.

In the furtherence of this investigation 37 demonstration or procedure
development flights were completed during the test period. There were
official observers from organizations such as the State of Vermont Executive
Office, the Agency of Transportation, DOT's FAA, USCG, and RSPA, Caneda's
Department of Transport, and representatives of the Directors of Aeronautiocs
of several New England States, the New York Department of Motor Vehicles, and
a representative of the State of Alaska, DOT, In addition four LORAN-C
receiver manufacturers and 33 GA pilots participated in one or more
familiarization, check out or demonstration flights, There were 16 flights to
develop procedures for using a LORAN~C navigator in the NAS., These 16 flights
evaluated holding patterns, straight in approaches and special departure
routes, Other flights demonstrated the use of LORAN-C for search activities
and rendezvous with ground units in remote mountainous terrain and for
completing forest spraying patterns.

The following sections discuss several important differences between the
use of LORAN-C RNAV and the use of conventional NAVAIDS and the methods and
results of the Vermont test program that relate to these issues. It should be
recognized that many of the igsues relevant to the discussion of the LORAN-C
navigation system apply as well to other types of RNAV equipment such as
Omega, inertial, NAVSTAR/GPS and VOR/DME.

2.2.1 Background

LORAN~C provides a different form of navigation assistance from the more
conventional enroute and non-precision approach guidance equipment, Its
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differences are not limited to cost, technological principles or development
history--nlthough these differences may be very large, More importantly,
LORAN-C provides a navigation capability to pilots and controllers which
differs fundamentelly in areas such as: ocoverage, accuracy, availability,
user interface, calibration requirements, performance capability, and
appliocation potential,

To understand the differences, the services provided by conventional
NAVAIDS are presented, oontrasted wilh LORAN~C, and equivalent procedures
identified, The facilitied currently providing virtually all of the enroute
and non-precision approach guidance are: VHF Omni-Directional Range (VOR),
Distance Measuring Equipment (DME), Non-Directional Beacons (NDB), and VHF

localizer facilities.

A VOR is a to-from navigation system; that is, a pilot may select either
an inbound or outbound course on any radial emanating from the transmitter.,
The resolution of course selection and alignment is approximstely cone degiss
and therefore all airways, fixes and commands referenced to a VOR are

d2scribed in one degree increments from magnetic north, The system is more

than 30 years old and is required for instrument flight in the U.8,; therefore

pilots and controllers fully accept and understand the system and use it

extensively. In Vermont, however, only two of the nine runways with published
instrument approaches are served by VOR (one of which of has a co-~located DME)
while two other airports offer circling approaches based on VOR/DME located 7

and 15 nautical miles distant from the respective airports,

Because it operates in the very high frequency (VHF) band VOR signals are

restricted to line-of-sight propagation. Depending on the class of the VOR
(terminal, low altitude or high altitude) it's range below 18,000 feet ocan
extend to 25 or 40 nautical miles assuming no obstructions to line-of-sight,
While some reglons receive redundant VOR coverage, mountainous and remote
areas, partiocularly near the surface, frequently have no VOR coverage.

Two VORs are located within the State of Vermont and three others are
located at the Vermont border in New York and New Hampshire. Because of

obstructions and other signal propagation difficulties, these facilities are
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unusable at transition and approach altitudes at all but five airports. See
Table 202"1 .

The VOR signal is subject to propagation distortions and multi-path
effects which can produce erroneous navigation information; for example, the
CDI needle may on occasion oscillate, particularly in mountainous terrain or
at certain propeller RPM settings. Flight testing is required to assure the
quality of VOR signals in a given region. The specification on total VOR
system accuracy is 4.5 degrees (95 percent confidence) which translates to a
potential position error of 471 feet per nautical mile of distance between
transmitt + and aircraft. Frequent accuracy'checks of the airborne equipment
must be made 2ither on the ground or in the air to comply with Federal
Aviation Regulations for instrument flight. These checks are accomplished by
noting the indicated position when located at or over a known position,
through the use of a special VOR -~ test transmitter, or by crosschecking two

receivers against one another.

DME determines the distance between the ground receiver/transmitter site
and the airborne equipment by measuring the round-trip travel time of an ultra
high frequency (UHF) signal. DME ground stations are usually co-located with
a VOR; VOR and DME frequencies are paired so that when the VOR is selected,
the DME will automatically be tuned in. Like VOR, DME coverage is limited to
line-of-sight.

The DME system accuracy is generally within 0.1 nm or 1 percent of the
distanee, whichever is greater, This does not include the error introduced by
measuring the slant range rather than the actuzi horizontal distance from the

station.

Co~locateri VOR/DME systems provide a complete horizontal navigation
capability. A radial and distance can be specified to define any point within
the accuracy and range of the equipment. This is known as a rho-theta system
since position is described by a distance (rho) and an angle (theta) relative
to the transmitter. ATC uses intersections of two radials (theta~theta) or a
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TABLE 2.2-1. LIMITATIONS ON VOR USAGE IN VERMONT

FACILITY REGION EFFECTED
BETWEEN BEYOND BELOW
RADIALS DISTANCE ALTITUDE
(deg) (nm) . (ft)
Mor.tpelier 205-230 30 7000
Burlington 080-105 35 5400
135-155 30 5400
080155 30 9000

TABLE 2.2-2. TIMES TO EWTER WAYPOINT DEFINITIONS

ALL DATA OUTLIERS REMOVED
MEAN ] SIGMA | SAMPLE | MEAM [ SIGMA | SAMPLE
(sec) ] (sec) (sec) |{sec)
Flight 355 Ground 35 |18 | 9 27 | o7 7
Flight 362 Ground 36 18 9 27 06 7
Combined Ground 26.9{ 06.3| 14
Flight 355 Air 41 15 7 33 05 5
Flight 362 Air 35 08 7 34 08 7
Combined Air 33.4{ 06.4| 12

64




RN

it st i

AP S S T < . Bm e s o

SRR IR M- -

radial and a distance arc (rho~theta) to define reporting or holding fixes
(rho~rho fixes are not used by ATC and few GA aircraft carry redundant DME
equipment),

Localizers, when used alone, provide non-precision approach guidance or,
used in conjunction with glide slope and other information, they provide the
horizontal portion of a precision approach guidance. The signal is normally
aligned with the runway center line and provides a 3 degrees to 6 degrees wide
channel to the runway threshold. Although proper off-course signals extend
35 degrees to either side of the runway out to 10 nm, and 10 degrees to either
side out to 18 nm, only one On-Course signal is indicated. There is only one
runway in Vermont equipped with full precision approach; single runways at two
other airports are served by Localizers and still another airport is served by

a localizer-not-aligned with the runway, called an LDA approach.

The ILS localizer signal is often usable for "back course'" approaches to
the reciprocal runway; however, the CDI indications may be reversed from the
normal VOR and localizer directions creating a somewhat higher workload and
blunder potential for the pilot; this use of "back course" localizers is being
phased out., Localizers, therefore, are inflexible in that they can only serve

a single runway with a fixed, straight, approach course.

NDBs provide guidance for the transition from enroute to airport precision
approaches and frequently serve as the primary approach guidance for many
small and remote airports. Of the nine airports in Vermont with published
instrument approaches, three are serviced only by NDBs,and four others
incorporate NDBs in their terminal and approach procedures, Since NDBs
operate in the low and medium frequency band, these signals can reach many
locations not within line-of-sight. Transmitter power varies among
installations so that service ranges of from 10 to 350 nm are expeij .nced,
Equipment accuracy is approximately 3 degrees. It is noted here that all of
the NDBs situated in Vermont are low radiated power facilities thus are
relatively short ranged,
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NDBs provide relative directional information rather than track definition
(as a VOR does) thus compensation for orosswind component of wind is more
difficult, A pilot may home on a NDB or through the use of magnetic heading
even fly a given radial to or from the transmitter. The mental workload
required of the pilot when using the NAVAID preecludes it from playing a major
role in the enroute alrway system, In addition, compass inaccuracy and
instability may add an additional 5 degrees to the equipment error. For
approach guidance, an NDB may be restricted to only moderately low minimum
descent altitudes (MDA) and circle~to-land approach procedures, These
restrictions adversely affect airport utilization; for example, at Newport,
Vermont the circle-to-land approach includes an MDA of 1640 to 2020 ft, while
the LORAN-C straight-in approach permits the MDA to be lowered to 1420 ft.

LORAN-C used in conjunction with RNAV computers can provide either a
to-from navigation system similar to VOR, or a to-to system, as is the case in
the TDL-711. The 711 requires two waypoints to define a course; this course
1s a great cicle path between the waypoints and thus navigation is always,
outwardly, based on flying to the next point; that is, one cannot set up a
radial and fly away from WP, although it is possible to achieve the same end
result by proper use of the equipment. Navigation can be continued on the
line extending through the two waypcints even beyond the fix itself,if the

situation so dictates.

The 711 system accepts waypoints which are defined either as LORAN-C Time
Differences or as True Latitude and Longitude coordinates. The pilot is
permitted to enter the coordinates of any two positions or of aircraft present
position plus waypoint and then either fly a direct route between them or he
may maneuver randomly with respect to (i.e., on ATC vectors) the steering
commands. These positions can correspond to conventional NAVKIDS,
intersections, airports or any impromptu positions defined by the pilot or ATC.

LORAN-C operates in the low frequency RF band and therefore is not
hindered by topography or other line-of-sight limitations. 1Its transmitting
power is sufficient to provide coverage over hundreds of miles, including
remote areas, and rugged terrain. Its accuracy, as discussed in Section 2.1

was demonstrated to be more than sufficient for use beth as an enroute and a
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non-precision approach facility. Propagation, anomalies, terrain, seasonal
and other effects could require the use of calibration procedures at other
locations and times; generally, however, the Vermont flight tests indicated
that the temporal variations were sufficiently small that calibration was not
needed to meet AC90-U5A accuracy requirements when using the primary triad. On
those occasions when the transmitter at Carolina Beach was substituted for
Nantucket and calibration values were used, enroute and approach navigation
continued to meet the AC requirements.

2.2.2 Methods of Data Collection

Data related to operational acceptability of LORAN-C RNAV in the civil
aviation environment was gathered through interviews and reports completed by
the GA pilots who participated in the demonstration and familiarization
flights, This information was included with the "Mission Complete Reports"
prepared for each of 104 RNAV evaluation flights.

Four primary data sources available from the test program were: in-flight
electronic recording of the parameters shown in Table 2.1-2; mission-pilot and
flight engineer written reports providing a chronological background of
information, general comments and procedural observations for each flight:
recordings of LORAN-C signals received on the ground at Burlington
International Airport; and LORAN-C station logs provided by the U.S. Coast
Guard.

The detail provided by the inflight electronic data recording permits a
relatively complete reconstitution of the information available to the pilot,
evidence of which parameters he was viewing at any time, the time of 711 CDU
switch ¢ erations, and his general utilization of the equipment. The ground
recordings and the USCG station logs provided information about operation of
the LORAN-C transmitters,
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2.2,3 Results and Conclusions

The Vermont test program permitted observation of the suitability of
LORAN-C RNAV in all phases of flight and in many strenuous and unusual
environmental and aircraft flight conditions, Surprisingly few significant
RNAV system problems were encountered during the 104 flights; however, the
events of two flights (BTV 355 and 362-1) described in detail in Appendix C
give useful insight to difficulties which can be experienced on occasion.
From data collected for these two and the remaining 102 routine flights,
conclusions are drawn regarding the operational suitability and procedural
implications of using LORAN~C RNAV for civil air navigation,

2.2.3.1 LORAN-C RNAV Compatibility with ATC Procedures -- Safe and efficient
flow of traffic depends in large measure on the ATC system facilities as they
are and proper use of standardized operating procedures which controllers and
pilots follow. The current ATC and cockpit procedures have evolved with
growth of the present VOR/DME and radar surveillance systems. The airborne
and ground hase systems, despite some shoricomings, account for a majority cf
eiroute guidance, The VOR/DME system, togeth¢r with NDBs and localizers,
provide the system's non-precision approach guidance. Procerdures are,
therefore, irevolutionary in nature and tailored to meet the requirements of
these existing, 30 year old systems and are not necessarily compatible with
the most efficient or practical uses of a LORAN-C RNAV system.

a. LORAN-C in the Present ATC System -- The current ATC system uses VOR/DME

as the primary navigation system; the airborne navigation equipment must
enable the pilot to accomplish the following:

- fly to the location of a VOR on a given radial

- fly from the location of a VOR on a given radial

—~ 1identify aircraft position as a radial and distance from a stipulated
VOR/DME facility

~ lidentify position with respect to the intersection of radials from two
VOR facilities

- fly directly tc a VOR from the current position by the shortest route
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- fly along charted alrways, identifying and reporting position with
respect to distance along route and intersection location

- "hold" along a VOR radial at a fix defined by an intersection or
distance from a VOR/DME

In its simplest form VOR/DME is a to-from system of navigation whereas the
TD1-711 LORAN-C recelver is a to-to "homing" system designed to minimize
workload when operating on airways or in patterns relative to a specified
facility. Without an RNAV computer off-airway operation imposes a sharply
inoreased workload., The TDL-711 is designed for off-airways operation and
thus the pilot must become familiar with new procedures, not necessarily
straightforward, in order to fully satisfy the ATC tactical requirements
listed above. However, with a bit of study and some advance planning, the 711
can fully meet these requirements with a high degree cf precision and without
imposing undue workload,

Any point or path defined in a to-from system can also be defined in a
to-to system, conversion from rho-theta to rectangular coordinates (latitude
and longitude) can be performed graphically or by using a calculator, or can
be supplied on charts or in computer memory. For routes defined by a "from"
radial, (such as those often found on Standard Instrument Departures (SIDs)
and Standard Terminal Arrival Routes (STARs), a pair of waypoints could be
depicted on charts, Holding patterns can also be defined by a pair of
waypoints, as, for example, note the HERRO-CAUSS Holding Pattern included on
the BTV LORAN-C Runway 15 approach (Figure 2.2-1). With this additional

waypoint information made available to pilots, all requests made by the
current ATC system can be met.

While it may seem operationally difficult for a controller to supply the
geographical coordinates of a fix selected on an ad hoc or impromptu basis,
the future use of advanced ATC compute- ' suggest that some flexibility in this
area may eventually be available. Until then on those occasions when a
controller must ask a pilot to report crossing a radial from a VOR or to hold
on a radial at a point not charted as a holding location, the procedures
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desoribed above offer a viable solution, In the future, ATC may have the
capability to define RNAV waypoints by coded units of latitude and longitude
as, for example, 44° 00.,0' N 73° 00.0' W, perhaps characterized simply as

3 44/73.

b. Expanded Service: Future Uses and Benefits -~ The TDL-711 RNAV system

: provides capabilities which could ultimately lead to increased capability in

; enroute and terminal airspace while at the same time reducing controller

% workload, The operations in Vermont during the 18-months long flight program
; have indicated the possibility of providing additional departure and arrival

i paths, straight-in approaches, improved holding patterns, enroute-direct and

; traffic reliever routes, which will increase the safety or efficiency of the
National Airs:.sce System, The ability to define impromptu fixes, fly direct
to any given fix, and fly a parallel course offset from the parent course by a
specified amount all enhance the performance of today's ATC system.

LORAN-C RNAV permits shorter, more direct routes to be flown, glves the
controller increased flexibility in separation and sequencing of traffie,

;‘ allows for reduced minima at many airports, provides instrument approaches to
many more funways and reduces controller workload. Any number of holding
patterns can be defined to meet current needs. During flight BTV-169, several
holding patterns were flown in the Morrisville area using existing waypoint
definitions and offset values; this saved data entry time and provided the
navigation information required. In addition, it assisted the pilot in
: maintaining positicn in the holding pattern despite excessive drift due to a
? 40 knot crosswind (this has been a problem on many previous flights).

Parallel off{sets can be used for many purposes; often their use will
replace an equivalent series of radar vectot’s. Traffic conflicts, weather
avoidance, alrcraft spacing, restricted airspace avoidance, flight path
reduction, and many other circumstances require radar vectqrs from ATC, While
radar vectoring usually requires that the controller issue several commands to
accomplish the spacing he is trying to achieve or to feed an air:raft into an

S S . g iR v
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approach before releasing it to its "own navigation", the same end might be
accomplished by allowing the RNAV-equipped alrcraft to perform self-directed

maneuvers utilizing the very accurate parallel offset mode, This procedure
could sharply reduce communicatiors traffic and controller stress,

The capability to fly "direot" to any defined waypoint can also replace
radar vectoring presently used in some terminal areas to assist the pilot in
expediting entry to final approach., Moreover, the LORAN-C RNAV capability
will permit definition of more direot routes thereby shortening trip distance,
saving fuel and reducing operating costs. RNAV capability could give
controllers more flexibility in routing aircraft around areas of bad weather
or heavlly congested areas, SIDs and STARs can be made more efficient and
more flexible allowing for less costly sequencing and spacing maneuvers to be
prepublished and for changes to be made to landing runway during execution of
a STAR.

Definition of LORAN-C RNAV fixes at appropriate locations where no aids
now exist could permit straight-in approaches to many runways not presently
gserved by any NAVAIDS or to those which presently offer only cirele-to-land
approaches, Better missed approach guidance can also be provided for many
alrports such as Rutland, VT where mountains interfere with VOR reception and
the only navigation aid is an NDB., Both of these improvements may lead to
lower minima at many runways and thus will provide improved service to the

aviation community and remute population centers.

¢. Approach Procedure Development -- Before public LORAN-C approaches can be
approved a et of guidelines for their development and specification must be
prepared and made a part of the FAA Terminal Instrument Procedures (TERPS).

Each approach will require selection and designation of a minimum three
waypoints: Final Approach, Runway Threshold and Missed Approach. Enroute and
transition waypoints may be used for more than one approach and also for
departures, Each runway will have a missed approach point (MAP) defined
either by a WP or by the along track distance readout, preferably the latter,
to indicate the location at which the decision to land or to abort must be
made. The course and distance solution for final approach will be defined
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(for the RNAV system) by the Final Approach and Runway Threshold waypoints.
Additional waypoints may be assigned, i,e.,, initial approach and intermediate
approach waypoints but only Lf there is some special need like a turn in the
approach, LORAN-C offers the possibility of segmented and angled approaches
to runways blocked by obstructions which could result in use of additional

waypoints, i,e,, WILEY and BLAKE on the Morrisville Approach. Each instrument

approach is designed with a missed approach procedure which is initiated 1if,
upon reaching the MAP, the runway is not visible to the pilot. One or more
waypoints may be specified to assist the pilot in avoiding hazards while
climbing to a safe altitude., The procedure returns the pilot to a point from
which another approach can be made if he so elects, or alternative action may
be taken,

Until the introduction of LORAN-C RNAV all missed approaches in Vermont
were designed around the avalilable terminal navigation aid. This often
results in the missed approach including undesirably abrupt maneuvers as the
180 degree turns at Rutland and Morrisville, During the LORAN-C RNAV project
new departure and missed approach procedures were evaluated, At Rutland, for
example, the present instrument departure and the missed approach are to the
north over the IRA NDB. During the test a flight path to the south was
evaluated which appears to allow for improved minimum on approach, a much
improved missed approach procedure, and a more reasonable departure for all
south-bound traffic. There 1s reason to believe that successful
implementation of this south-bound departure route will reduce delays at the
airport and will materially improve operating costs.

The ability to essentially stick waypoints wherever needed, at no
compromise to acouracy of navigation, 1s felt to be a major advantage of
LORAN-C, Additional waypoints can be useful in providing alternative
transition routes between enroute and approach phases of flight or to provide
alternative paths for use by aircraft of differing performance or to allow
controllers more flexibility in sequencing and separating traffic.

The stability of grid bias has been determined to be such that LORAN-C
approach charts could contain all navigation information which would be

required when an aircraft entered a particular region. For example the

approach minima might depend on whether the primary triad or the zlternate
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triad is utilized, As an alternative to using published data air traffio
controllers could relay the data while transmitting approach clearances, A
second alternative is to permit calibrations for the alternate triad to be
made on the ground anywhere within a given distance of the destination airport
as long as it i1s within the same triad. In the long term it is assumed that
secondary phase correction data, the problem which leads to the need for
calibration, will be permanently stored in RNAV system memory and thus be
totally transparent among users, minimizing the possiblity for blunder, and
reducing workload, (This is a feature that will be designated into the FAA's
low-cost receiver,)

Procedures for handling transmitter outage will also be required. While
there is some transmitter redundaney in the system, use of alternative
configurations will require introduction of different biss corrections,
calibration values, or parallel offset quantities to cope with local
anomalies, If an alternate triad is used, it may be necessary to raise
minima, '

Since the TDL-711 requires from 10 co 20 sec nds to complete its internal
confidence check following a re-ordering of the transmitters in a triad (when
keyboard entry is used), some special procedures may be required during final
approach in the event of loss of navigation (steering) data. A momentary
interruption, even though only of 20 seconds duration, when at one mile on
final approach could be uonsiderably more serious than a similar event while
enroute,

2.2.3.2 Cockpit Procedures -- The effect of LORAN-C RNAV on cockpit
procedures 1s a c¢ritical issue, It is essential that use of the system will
not increase pilot workload and, thereby, the chance of a blunder or reduced
piloting performance. Requirements for retraining and limitations on use of
the system must be determined. Various new regulations, charting
requirements, training programs, and piloting techniques may be necessary.
The Vermont test program has addressed these questions; a discussion of new

cockpit procedures and pilot workload follows.
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8, Waypoint Determination and Entry =~ The 711 LOBAN-C RNAV receiver accepts
waypoint definitions in either TD coordinates or latitude and longitude (L/L)
coordinates, Both of these ar. vastly different and unfamiliar to a pilot
trained and experienced in using VOR/DME, Identification and entry of fixes
with respect to these coordinates create certain difficulties as well as
opportunities,

While ameornautical charts such as SIDs and STARs display the latitude and
longitude of various fixes, standard approach plates and enroute charts
generally do not. For a LORAN-C RNAV to be compatible with VOR/DME, the
locuations of fixes must be specified precisely; the locaticn that a pilot
might determine by reading the scale of a chart is not reliable or consistent
enough given the errors introduced by this method as well as the inaccuracy of
printed chartsa,

Even if all commonly used fixes are published with latitude and longitude,
it might still be difficult for a pilot to determine the coordinates of an ad
hoe fix, It is far easier to visualize flying along a radial from a charted
VOR than along a route defined by two points on the globe,

In addition, the entry of L/L coordinates requires a string of 15
keystrokes consisting of one for east/west and north/south, five diglts for
each coordinate, and three uses of the "enter" key. Before this information
cah be entered on the keyboard, a selector knob must be turned to the
appropriate position, This data entered will uniquely identify any point on
the globe (to a certain precision), This permits a great deal of flexibility
in determining the fix selected; however, it imposes a burden on the pilot,
Furthermore, a string of digits isg difficult to remember and to verify. A fix
identified by name, whose coordinates are stored in memory, is at least easier
to enter, verify, and remember, Furthermore, an erroneous character is likely
to produce an unrecognizable name and will therefore be rejected.

The resolution of L/L entry with the TD1-711 (i.e. 0.1') may be
insufficient for some approaches, To define a waypoint more accurately for
the purposes of an approach would require another digit(s) and create even
higher demands on the pilot. To achieve the additional precision without
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adding complexity, the parallel offset feature may be used to adjust a course
slightly and define a track that falls between two grid points, This
technique was used with a great deal of success for approaches to RW15 at
Burlington, where a 0,05 nm offset to the right was found to be appropriate.
Preprogrammed fixes could, of course, be specified to any desired degree of
precision,

The task of waypoint definition is greatly simplified by the capacity of
the 711 to store up to nine fixes at a time. This enables the pilot to enter
the data for all or most of the flight on the ground in an unhurried fashion,
With some forethought, a complete set of fixes for any diffiocult portion of a
flight, such as approach and missed approach, can be defined during a less
demanding time., Training and regulation should emphasize the value of setting
up the required and contingent fixes before they are needed, This will
relieve much of the burden imposed by the L/L coordinate system. Under
current ATC procedures, a typical point-to~point flight will not require any
inflight waypoint entry or at most one set might be entered midway through the
flight. In the future, however, when ATC begins to take full advantage of
RNAV capability, many contingent waypoints may be specified for spacing
purposes; this may increase the requirements for waypoint storage capacity.
For the time being nine is sufficient but fewer might impact workload
significantly in some circumstances.

To further enhance the performance of LORAN-C RNAV, the locations of all
VOR/DMEs and other important waypoints such as final Approach Fixes and Missed
Approach Points, should be prestored and referenced by a 3 to 5 letter code.

Furthermore, it should be possible for the user to define waypoints in the
form of a distance and bearing from any known point, The distance and bearing
between any two pointas defined should also be displayed on request to verify
the location of the waypoints., The best solution of all is the CRT displays
now being used in advance cockpit designs, These will permit the paths
defined by the waypoints to be displayed in relationship to known locations
including VORs, airports and terrain features. It may also be possible to
define waypoints through interactive use of these displays using a light pen
of other data entry devitae,
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b. Pilot Workload -- For LORAN-~C to be an acceptable navigation system it
must be demonstrated that neither the workload it places on the pilot nor the
potential for blunders is excessive. Many differences exist between waypoint
entry in latitude and longitude versus a rho-theta coordinate system such as
VOR/DME, Some of these differences are an advantage while others increase
workload or blunder potential.

Because latitude and longitude are global coordinates they can be entered
and stored in computer memory independently of station selection. A VOR/DME
coordinate is a local coordinate that must be referenced to a given station,
identified by its three letter code or its frequency. The ability to set up
the majority of the waypoints for a flight while on the ground and the
remainder during a relaxed portion of the flight relieves the piloet's workload
tremendously. Furthermore, it shifts the burden from times determined by
navigation requirements, often high workload periods, to more convenient times
of the pillot's choosing,

The most serious drawback of the L/L form of waypoint specification in the
TDL-T11l is the potential for blunder. This arises from several
characteristics of this form of specification not found in VOR/DME. First,
the entries are made digitally rather than through a continuous (albeit click)
dial. This makes the transposition or erroneous entry of a single digit
potentially very se¢rious. An error in a single digit can cause an error of
several degrees of latitude or longitude. While this is so gross an error the
pilot might soon recognizée it, errors in less significant digits would produce
Sserious but less easily detected errors.

Another possible blunder arises from the use of multiple-position switches
and multiple use display. During one flight (BTV-113) the pilot attempted to
enter waypoint inf-;rmation while the selection switch was on the magnetic
variation mode, This points out the potential for entering data or

interpreting displayed data incorrectly because insufficient physical clues
indicate the mode of the selectors and displays.
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On several cccasions a leg change was made incorrectly by entering one or
more incorrect waypoints (e.g., BTV~-0U45), Although the incorrect distance and
bearing ¢to the next waypoint indicated the error, the pilot might not verify
the selection by this means under difficult situations, Since this is
currently the only means to verify the valldity of the next waypoint it may be
advisable to display current track and distance to go continuously on the CDI
itself.

The time required to enter a waypoint and to enter waypoint changes 1is an
important indication of workload. Although the data available from the
Vermont test program do not include %ime spent looking up values, they do at
least indicate the length of time required to enter the data and the frequency
of errors,

Figure 2.2-2 is a frequency distribution of the time to enter leg changes
(the waypoint numbers) for one pilot on several flights., This distribution is
roughly normal with:

mean (x) = 11.35 seconds

Standard deviation(s) 3.74 seconds

number of samples (n) 100 samples

)

The few high values for 18 to 24 seconds are most likely due to input
error which was corrected immediately. There are seven of these values so
approximately 7 percent of the waypoint changes had to be entered twice due to

error,

The times to enter waypoint definitions were also measured both on the
ground and inflight, Statistics from two flights were calculated for these
values both with and without the values corresponding to entry errors -- these
are shown in Table 2.2-1.

While the results from the two flights are quite consistent there appears
to be a difference between air and ground entry times. Using a Student's test
of significance, we find that, with outliers removed, the difference between
ground and airborne measurements is significant to the 99 percznt level, It
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i3 also noteworthy that 4 of 18 ground samples were outliers, indicating that
errors in data entry are made, and corrected, approximately 22 percent of the
time on the ground and 14 percent in the air. Certainly differences will be
evident between pilots of varying skill and familiarity with the equipment.

Differences are also expected between flights conducted under varying levels

of stress created by ATC and weather conditions.

Several test flights conducted in a Cessna Turbo 210 aircraft focused
primarily on the evalauation of enroute operations and procedures, Both the
New England and Great Lakes LORAN-C chains were used in providing the
opportunity to study transitions between chains as they affect cockpit
procedures.,

The pilots involved in this study agreed that the LORAN-C provided
"significant reduction in workload, increased ease in locating airports (like
Manassas, VA which has no NAVAIDS), better track keeping performance and more
time for outside-the-~cockpit-scans,..”, Generally all waypoints were
programmed prior to takeoff and in many instances the destination airport was
called up as the to waypolnt immediately upon becoming airborne.

It was also found that ATC was very cooperative in providing "direct!
clearances from airports to distant NAVAIDS. For example, a direct routing
from Burlington, VT to Delancy, NY, 166 miles west, was issued frequently.
Operationo from Portland to Burlington were almost always cleared direct from
runway to runway. Even in the New York City area, ATC was willing to permit
portions of the flights to be flown direct rather than on established airways.

2.2.3.3 Signal Quality and Implications for Flight Procedures -~ Probably the
most important issue concerning any navigation system is the quality of the
signal throughout space and time. Before it can be relied upon to guide
aireraft under actual instrument conditions, extensive studies must be made
throughout the coverage area to be certified, and over a time period that
encompasses all conditions that might be experienced during actual use.
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In Section 2.3.2,1 figures were presented that indicate that LORAN-C
coverage is available throughout the region of interest, that the signal was
interrupted only briefly and on relatively few oocasions, and that accuracy is
within the allowed tolerances,
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2.3 GROUND~BASED LORAN~C SIGNAL MONITORING RESULTS

Within the groundwave coverage region, LORAN-C is capable of providing any
user having appropriate receiving equipment with a predictable accuracy of 0.2
nm (2 drms) or better (Reference 3), which will satisfy the accuracy
requirements of AC90-~U5A for all phases of flight., To certify that the
LORAN-C RNAV system does indeed meet these requirements in Vermont, specific
LORAN-C signal properties were examined by ground-based monitoring. Monitor
requirements were determined by analyzing characteristics of LORAN-C
performance with respect to the requirements of an air navigation system, as
described in Appendix A,

2.3,1 Objectives of Ground-Based Signal Monitoring

The purpose of the ground-based signal monitoring program was to acquire a
data base describing operational and technical characteristics of LORAN-C
signals at inland and mountailnous areas. Although the specific data gathering
was concentrated in Vermont, the data base itself will be applicable to
similar inland regions,

One objective of the ground-monitoring effort was to evaluate the
characteristios of LORAN-C signalis in the electromagnetic (EM) noise and
interference environment of typical airports. A second objective was to
investigate the predictability of LORAN~C time difference variations (i.e.,
the repeatability and magnitude of "bias" or "grid error") at particular
geographic locations., An understanding of the grid error is necessary to
demonstrate the LORAN-C system's capability to satisfy non-precision approach
requirements. A third objective was to determine the nature of temporal
changes in the LORAN-C signal over the short and long term at various
locations within the coverage areas of the triads being used. The final
objective was to assess the reliability, availability, and stability of the
LORAN-C signals for airbortfie applications, Based on the foregoing objectives
the ground-based testing was designed to quantify the following:
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1. Signal availability

2. Signal strength

3. Noilse and interference

4, Propagation anomalies

5. Envelope-to-cycle difference (ECD)

These characteristics can be related to the outputs of a stationary
ground-based receiver, as shown in Table 2,3-1., Note that from the table some
of the observable quanties obtained from thu ground-based receiver are related
to more than one signal characteristic, Thls makes the relationship between
the measured quantities and the desired parameters somewhat complicated, as
discussed in the next section,

The‘aaté'gathering effort involved monitoring and recording LORAN-C
slgnals in close praximity to ground-air communication and navigation
facilities, The ground tests also provided information concerning the
temporal stability of the signals, thereby permitting an assessment of the

alrport. 1In addition, an assessment was made of the variability in LORAN-C
time~difference coordinates at the selected locations. The availability of
in-tolerance LORAN-C signals necessary to support air navigation was assessed
by examining the USCG's logs for the Northeast LORAN-C chain .

The accuracy of LORAN-C navigation is primarily influenced by propagation
anomalies. To fully meet AC90-U45A area navigatlion accuracy requirements
during the approach phase of a flight, the total combined effect of
uncompensated propagation anomalies and receiver errors (root sum square
(RSS)) must not exceed 0.45 nm, 2 drms, with a probability of 98.2 precent.

To establish the magnitude c¢f allowable time difference errors for
operations in Vermont, consistent with this performance qucification. the
geometric effects of signal gradient and LOP crossing angle must be accounted
for. Consider worst case geometry conditions for the primary triad (Seneca,
Caribou, Nantucket) encountered at the ground data collection sites. From
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TABLE 2.3-1. RELATION BETWEEN RECEIVER OUTPUTS AND SIGNAL CHARACTERISTICS

SIGNAL CHARACTERISTICS
"
= of=
A A
=1 T batvid i R
S22 w8
SHISE|RE|E =
SEISEISEIZZ]8
RECEIVER OUTPUTS Nz la < | W
TD X X
SNR NUMBER X X
TRACKING MODE X X X
BLINK INDICATOR X
ENVELOPE TRACKING X
NUMBER
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Table A~7, it is seen that the smallest LOF orossing angle,d, is 43 degrees
and the largest gradient, G, is = 739 feet/mioroseoond, Assuming that these
worst case conditjons occur simultaneously, it can be shown that the 2 drms
position error,r,, can be related to the one~sigma TD error,cs'TD by ;

Py~ (4,1) (739) G'TD
re RZ 3030 G qp
For the allowable 2 drms error of 0.45 nm (2727 ft) qorresponding to
AC90-U5A approach requirements, the allowable standard deviation of the TD

error.<51}n. for primary trisd operation in Vermont is

G~ rp = 900 nanoseconds

It is assumed in Appendix B that a minimum performance airborne receiver
will have a one sigma jitter measurement error,cs‘n. of 150 nanoseconds or
less, which is consistent with the design described in Referenae 5. Then the
allowable one-sigma propagation anomoly error.(S‘PA. catl be determined from

S 6"

s’ pa
&’ pa

2.3.2 Test Equipment Configuration

887 nanoseconds §

The four ground-based LORAN-C data gathering systems were provided by NASA
LRC and DOT TSC. This section describes the two configurations of equipment
used in the project, one of which included a TDL~711 RNAV system and
instrumentation package installed in a NASA-supplied trailer and a second
configuration which utilized 3 Micrologic receivers packaged with recording
devices and located in office facilities at three airports,

2.3.2.1 Trailer Site - The NASA-supplied TDL-711 ground based data gathering

instrumentation package was designed, fabricated, and installed in a
NASA-supplied trailer by Langley Research Center personnel. The trailer was
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parked in a protected location in an alert hanger at Burlington, The facility
became the base of operations for the test program, All GA evaluation pilots,
and partiocipants in demonstration flights received instruction and preflight
briefings in the operations trailer, The instrumentation system installed in
the trailer was a replica of the airborne package installed in the E50
alroraft and permitted hands-on training for familiarization with the E50
711'3 operations prior to flight., Navigation charts, maps, and approach
plates were provided for familiarization of flight personnel with route of
£flight and planned approash procedures prior to flight,

The Vermont flight test englneer was responsible for replacement of the
data tapes on the inoremental recorder, maintenance of an opwvrations log, and
servicing of the 711, The system recorded the same LORAN-C parameters as the
airborne unit, Initially, the ground systom was adjusted to record data once
a second during the time of flight and once a minute at all other times, In
December 1979 it was decided that a one minute increment and continuous
recording would provide a sufficient data base for analyzing signal

2,3.2.2 Alrport Monitor Sites -~ The TSC~provided Micrologic stationary
LORAN-C monitors were installed at Burlington, Newport and Ruland
airports,three of the five were involved in the terminai and approach
procedural and accuracy evaluation of flight activities (See Figures 2.3-1 and
2.3-2). This arrangement allowed for direct comparison of ground-monitored
and airborne data. Burlington is a desirable site for ground monitoring
because it 1s a major airport equipped with VOR/DME, ILS, NDB, marker beacon,
control tower and RAPCON communication facilities, and radar equipment, and
therefore offers a representative electronic nvironment, In addition, there
are threut radio and two TV commercial broadcast and telecommunications hub
facilities. Newport and Rutland were chosen in part because of the proximity
of mountainous terrain and in part because of their importance to general
avaition in Vermont., For each monitor site, the groundwave propagation path
involves a number of aontrasting geological features which affect propagation
velocity. Weather conditions range from warm summers (90 °F) to very long,
relatively cold, snowy winters (=30 °F).
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A schematic of the monitor equipment installed at the three airports is
showi: in Figure 2,3-3. Miorologic ML-120 receivers were used to monitor the
LORAN-C signals, The Micrologic receivers were modified to provide data in a
serilal ASCII data stream, formatted for a standard RS 232 data communication
interface, An Interface adapter then converted the data to frequency shift
keyed (FSK) tones that were recorded on a Sony TC-104 cassette recorder,
Initially, a single data sample was recorded every 30 minutes but later in the
program the output was charnged to a burst of 10 data samples recorded every
three hours, Cessettes were replaced every other day by local volunteer
personnel who forwarded the recorded cassettes to TSC for processing.

Eagh data sample consisted of:

1. TDs in microseconds

2. Signal-to-noise ratios (SNRs)
3. Tracking-mode numbers

4, Blink indicators

5. Envelope-~tracking numbers

The outputs correspond to th: LORAN-C signal characteristics as shown in
Table 2.3~1.

The ML-120 goes through three basic phases of operation:

1. Acquisition - The receiver searches for the proper pulse groups,
identifies the master, and starts tracking the pulse envelopes,

2. Tracking - Tracking of the RF zero crossing is established.

3. Low SNR - After track has been established, the receiver detects a low
SNR, but attempts to hold tracking until the SNR improves.

These phases are indicated by a mode number: 0 through 5 indicates stages
of the acquisition phase, 6 indicates tracking, and 7 and 8 indicates low SNR
conditions. Signal strength and SNR obviously affect the tracking mode.

Since a separate mode number is maintained for each transmitter, signal
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FIGURE 2.3-3. EQUIPMENT AT THE GROUND MONITOR SITES
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availability can be related to tracking mode, However, thz data-output
software of the ML-120 uses the master signal to establish the clock that
controls the data transfer. Therefcre, if the master signal is lost, no data
will be recorded, and all stations may appear unavailable,

As shown in Table 2,3-1, signal availability is also related to the blink
indicator. The blink indicator is used to signal that the chain monitor has
determined that an out-of-tolerance condition exists at a transmitter and it
should therefore not be used for navigation. The blink signal is transmitted
to the receiver by modulating the transmitter pulse,

Signal strength, noise, and interference are represented in the SNR
number, The SNR number is a coded value ranging from 0 to 247 that can be
related to the signal-to-noise ratio measured by the receiver, The
calibration curve, shown in Figure 2,3-4, is taken from Reference 9. AS
describeu above, low SNR conditions also cause a change in mede number,

Propagation anomalies show up directly as variations in the measured TDs.
Since the receiverlis situated at a fixed location, receiver outputs should
remain relatively constant. Any variations can be directly correlated with
external physical phenomena. Unfortunately, problems with tracking :lue to
envelope-~to-cycle difference may also show up in the TDs as a cycle slip of
approximately 10 microseconds, and these two effects must be separated,

The receiver also measures an envelope number. This number is used to
control envelope tracking in the receiver during acquisition and can be 1inked
to the ECD of the signal by the calibration curve of Figure 2.3-5, which is
taken from Reference 9, However, a problem was found with the use of the
envelope number as a measure of ECD. The envelope tracking gains are reduced
when the receiver 1s tracking the phase of the signal. If then the ECD
wanders away from the envelope number, it will take 2 to 3 minutes for the
envelope number to follow. When this situation occurs the usefulness of the
envelope number as a measure of true ECD in the test data is impaired.
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2.3.3 Test Results and Conclusions

Data acquired from the ground-based units were analyzed in detail, It was
concluded that LORAN~C reception in the Vermont airport EM environment can
easily support uninterrupted operation while the aircraft is on the ground or
at any altitude, The temporal stability (repeatability) of the data was found
to be more than adequaty to support operation within AC90-U45A requirements.
The availability of LORAN~C signals was assessed by a review of the Seneca
station logs and found to be very high, consistent with Coast Guard
objeoctives, Details of this analysis are presented below.

2.3.3.1 Signal Quality in an Airport Environment - A situation experienéed ab
some airports is the presence of EM local interference which results in low
SNR within the LORAN-C receiver, A SNR below -10db could prevent a receiver
from establishing automatic signal tracking state before leaving the airport
surface., A SNR below -15db could cause a receiver to lose track when
operating in the vicinity of the airport. The ground monitor system data
indicates that low SNR is not a problem in Vermont, Table 2,3-2 shows the
number of points recorded at each SNR level for the period from 1 May 1980 to
1 September 1980, It will be seen that the transmitters in the primary triad
(Seneca, Caribou, and Nantucket) provide very high SNRs. Carolina Beach
provides an acceptable SNR most of the time, while Dana provides an
unacceptable SNR a large percentage of the time, as expected (see Appendix A).
Table 2.3-3 summarizes the percentages of data samples that yielded SNRs above

the ~10 db level required for initial signal acquisition.

Although problems with Micrologic stationary monitor equipment prevented
acquisition of good data during the winter months, the TDL~%11 monitor unit in
the NASA trailer did provide coverage for the entire year., These data, as
typified by Figures 2,3-6 through 8, confirmed the high SNRs of the primary
triad.

3ince a large ECD can cause cycle slip or false initial acquisition, an
attempt was made to evaluate the ECDs of the transmitted LORAN-C signals. The
envelope numbers recorded by the receivers were converted to microseconds
using the calibration curve of Figure 2.3-5. Unusual distributions of
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TABLE 2,3-2, DISTRIBUTION OF SNR NUMBERS RECORDED FROM
T MAY 1980 TO 1 SEPTEMBER 1980

Py
5 QUANTITY OBSERVED IN
1 TRANSHITTER RANGE OF VALUES THIS RANGE {BY SITE)
: L?ggn)txnxr UPPER LIMIT | BURLINGTON] NEWPORT] RUTLAND
- -30 »20 00 0) 00
: ~20 -18 00 00 00
¥ -18 -16 00 00 00
-16 -4 00 00 00
¥ SENECA 14 -12 00 00 00
Vg 12 1) 00 00 00
1 -10 -08 00 00 00
i -08 «06 00 00 00
& -06 -04 0l 00 00
i ~04 w02 00 00 00
: -02 +00 00 00 00
iy +00 +10 2746 6199 | 3173
A -30 20 00 05 05
5 20 -18 00 00 01
. -18 -16 00 00 02
5 -16 -4 00 0) 02
¥ -14 -12 00 00 0l
g -12 -10 00 00 0l
i CARIBOU ~10 -08 00 00 03
fu ~08 ~06 00 00 06
j 06 -04 00 00 13
: 04 ~02 00 00 12
, -02 +00 01 00 N
] +00 +10 2746 5194 | 3116
y -30 20 00 08 01
i -20 -18 00 00 00
g -18 ~16 00 00 00
uj -16 w14 00 00 00
s -14 12 00 00 00
i NANTUCKET -12 -10 00 o | oo
A =10 -08 01 01 | oo
1 -08 -06 09 01 0)
Y -06 ~04 05 00 0]
g -04 02 05 02 00
3 02 +00 18 03 00
i +00 +10 2707 5184 | 3169
fit
¥ -30 -20 03 18 01
33 ~20 -18 03 21 00
T -18 -16 12 3] 00
g -16 -14 24 103 0)
-14 -12 39 167 02
CAROL INA -12 -10 58 228 03
BEACH -10 -08 150 566 08
-08 -06 256 459 12
~06 -04 312 260 15
-04 -02 205 209 44
-02 +00 309 289 46
+00 +10 1284 2858 | 3041
-30 -20 62 39 05
-20 -18 61 61 04
-18 ~16 124 140 13
-16 -14 210 235 7
_ -14 -12 267 an 37
DANA -12 -10 276 354 48
-10 -08 498 532 | 13
-08 -06 392 304 | 169
-06 -04 225 422 | 142
-04 -02 143 83 | 168
-02 +00 e 921 | 200
+00 +10 370 985 [ 2233
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TABLE 2 ' 3"3'

PERCENTAGES OF SAMPLES WITH ACCEPTABLE
SNR (GREATER THAN =10 db)

MONITOR SITE

TRANSMITTER BURLINGTON | NEWPORT | RUTLAND
SENECA 100.0 100.0 100.0

CARIBOU 100.0 99.9 99.6

NANTUCKET 160.0 99.8 100.0

CAROLINA

BEACH 94.9 89.1 99,8

DANA 63.6 76.9 96.1
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envelope numbers were noted, as shown in Table 2,3-4, The ECDs were also
checked indirectly by examining distributions of the TDs recorded at the
monitors, and only a small percentage of cycle slips were noted, Therefore,
it is considered unlikely that major problems with the ECD actually occurred,
In view of this hypothesis and because of the recelver characteristics
discussed in the previous section, it was concluded that the envelope numbers
recorded during the ground monitor tests could not be used as an accurate
measure of ECDs.

2,3.3.2 Temporal Stability of Time Differences - Temporal variations were
resolved into seasonal and diurnal subsets, Seasonal variations were
investigated by first averaging all the data gathered within a given day then
comparing the result as a variance from a nominal ITD value, Figures 2.3~9 and
10 illustrate long-term seasonal results, variances by Julian Day for Caribou
(Nominal TD 14227.6 microseconds) and Nantucket (Nominal TD 27269.5
microseconds) respectively., Each point represents the daily average of TD
data. A blank space indicates that no data was available for that day.
Although prohlems with the monitor equipment did not permit acquisition of
continuous data, a definite seasonal variation of 0,5 microseconds
peak-to-peak could be seen which translates to change in position,
peak-to~peak, of the order of 360 feet, This variation is also evident in the
data collected in the trailer at Burlington, Figures 2.3-11 and 12, Such a

variation is to be expected as a result of seasonal changes in ground
conductivity.

Although only a relatively small seasonal effect was observed, this data
should be interpreted with some caution, since Vermont experienced somewhat
unusual weather during the winter of 1979-1980, The unusually low snowfall
may have produced a &naller than normal change in surface conductivity.
Nonetheless, there is such a large error margin between observed TD variations
in Vermont and AC90-45A requirements that even with significant climatological
changes there should be no difficulty in meeting accuracy requirements even
without use of calibration procedures.
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TABLE 2.3-4,

DISTRIBUTION OF ENVELOPE NUMBERS RECORDED FROM
1 MAY 1980 TO 1 SEPTEMBER 1980

QUANTITY OBSERVED IN
TRANSMITTER RANGE OF VALUES THIS BANGE (BY 31TE)
LOWER LIMITE UPPER LIMIT | BURLINGTON]NEWPORTIRUTLAND
(u sec,) {u sec.)

=08 »0% 19} [11] 33
~05 ~04 00 00 119
~04 ~03 00 00 106
»03 »02 00 (1] 70
wod =01 00 00 29
, «0) +J 0 2| o
SERECA +00 101 42 1156 04
+01 +02 438 3305 06
+02 103 1839 700 A2
+03 +04 M 04 | 203
+04 +05 13 00 1666
405 +10 N 00 894
+10 +16 00 00 00
~08 ~05 00 0} 90
-0 =04 00 00 26
=04 =03 00 00 24
=03 ~02 00 04 79
=02 -0 00 03 272
CARIBOU -0 400 13 1098 234
+00 +01 84 3840 104
101 +02 356 245 65
+02 +03 1289 07 27
103 +04 866 00 20
+04 +05 133 00 40
+05 +10 03 00 | 1259
+10 +15 00 0 962
~08 =05 00 04 8

=05 =04 02 00 2
-04 =03 14 00 97
-03 02 30 o0 | 152

=02 -0} 1 0 101
=01 00 12 05 14
NANTUCKEY +00 +01 02 285 03
+01 +02 07 2027 04
+02 403 32 2579 10
403 +04 169 285 88
404 +05 1092 Nn 373
+05 +10 1382 01 2276
+10 +16 00 00 04
«08 «05 00 08 55
=05 =04 03 16 26
-04 -03 21 48 66
~03 -02 43 103 118
-02 =01 64 169 132

CAROLINA =01 +00 62 375 9
BEACH +0 +01 88 394 60
4+0i +02 166 734 56
+02 +03 an 1169 ¢3
+03 +04 616 1171 1
+04 +05 735 729 196
+05 +10 576 203 | 1852
+0 +15 00 00 | 338

-08 -05 0 10 61
-05 -04 01 1w | 2

~04 =03 92 69 61
-03 -02 237 157 | 144
=02 =01 347 281 400
-0 400 308 533 | 429
DANA +00 +01 182 754 | 224
+01 +02 164 M 160
+02 +03 190 042 | 136
+03 +04 226 801 109
+04 +05 316 453 | 138
+05 +10 678 172 | 929
+10 +15 04 00 { 360
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Diurnal TD variations were studied by taking averages of ground data for
the same hour of the day, each day of collection. Typlcal diurnal averages
for the 1 May 1980 through 1 September 1980 time period are shown in Figures
2.3-13 and 14, The figures also show the one-sigma limits derived from the
sample variance, The variation in TDs is shown to be small over the day,

typlcally less than 0,2 microseconds.

Similar averages were also formed from the trailer data, Figures 2,3-15
and 16 show the TD averages at Burlington, Although this data exhibits a

larger dispersion (0.17 microsecond one-sigma), the mean variations are still
quite small.,

The total effect of all propagation anomalies on position error can be
seen in Figure 2.3-17. Here the average position errors for the trailer data
samples are plotted in north and east coordinates. Each data sampling period
ranged from a few hours to several days. These data are referenced to true
latitude and longitude, ar:., therefore show the effects of grid bias as well as
temporal propagation anomalies. The circle containing more than 98 percent of
the observed data is also shown in the figure. Since the radius of this

circle is only 0.06 nm, the observed data meets the AC90-45A 2 drms approach
requirement of 0.45nm with a large margin to spare.

2.3.3.3 Signal Availability - The Coast Guard has established a goal of 99.7
percent availabllity for each LORAN-C station tabulated monthly, Table 2.3-5
shows the availability percentages computed from the Northeast U.S. chain logs
from the period 3 December 1979 through 15 October 1980, A signal is defined
as available if it is within Coast Guard tolerance and the transmitter is not
blinking. Momentary outages of less than one minute do not count against
availability, but authorized (scheduled) outages are counted.

All stations show availability levels above the Coast Guard goal, except
for the master. However, this is somewhat misleading since current practice
is to blink the master when a secondary is out of tolerance., Thus, the actual
availability of the master is somewhat higher than shown in Table 2.3-5. In
any case, the availability is significantly greater than 99 percent for the

entire chain.
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TABLE 2,3~5, SIGNAL AVAILABILITY FOR THE NORTHEAST U.S. CHAIN °
(3 DECEMBER 1979 THROUGH 15 OCTOBER 1980)

!

| TRANSMITTER " LOCATION AVAILABILITY

f MASTER SENECA 99.61%
W SECONDARY CARIBOU 99.944%
X SECONDARY NANTUCKET ' 99, 88%
Y SECONDARY CAROL INA 99.76%

BEACH

Z SECONDARY DANA 99.91%

i

!

|

|

E

%
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3. SUMMARY

3.1 PURPOSE

The principal goal of this test prc¢3ram was to generate a comprehensive
data base of technical and operational experience with the LORAN-C navigator
as an air navigation system. The specific objectives of the progrem were:

1. Document the achievable accuracy of the LORAN-C navigator as an RNAV
system, for enroute, terminal and for non-precision approaches to remote
airports in or near the mountainous terrain of Vermont.

2. Evaluate the operational and procedural requirements for routine use of
the navigator in this environment.

3. Determine it' the LORAN-C signal characteristics are compatible with the

erm

noise environment in nt, repeatable over long periods of time and

v o
available throughout the five airport test range.

4, Obtain FAA approval by Supplemental Type Certification (STC) for the
LORAN-C equipment installation in the E50 Twin Bonanza permitting LORAN-C
enroute navigation throughout the state.

The test program was designed to determine, the suitability of using a
general aviation class, off-the-shelf, LORAN-C navigator as a means of
navigating during enroute, terminal and non-precision approach operations.
Minimum accuracy criteria established for the evaluation program are those
specified by FAA Advisory Circular 90-45A "Approval of Area Navigation System
for Use in the U,S3. National Airspace System."

The goal was met and three specific objectives accomplished. The fourth
objective, the awarding of the STC is in its final approval cycle,
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3.2 SCOPE

Between mid~July 1979 and mid-October 1980, the Beech E50 completed 104
flights, totalling 226 hours of LORAN-C data acquisition., Each flight was
designed to acquire| both accuracy and pilot procedural data, During this time
period four ground-pased monitor units acquired extensive data describing the
LORAN-C signal chanacteristios. Ground data and flight data were recorded

simultaniously to permit temporal variations to be correlated. For reference
data U,S. Coast Gugrd chain logs were obtained for the period of the test.

3.3 CONCLUSIONS

The LORAN-C system performance exceeded the accuracy requirements in
AC90-45A for.all phases of flight, during the entire test period without the
use of calibration factors using the primary triad, Use of the LORAN-C system
has operational benefits to the Air Traffic Control system and economical
benefits to the general aviation user. The LORAN-C signal characteristics are
compatible with the electromagnetic environment in Vermont, Temporal
variations do not warrant using compensation values in the TDL-711 (none were
used); and the signal was available for navigation in excess of 99 percent of
the time.

Specific conclusions include:

1. LORAN~C RNAV can meet Vermont's need for a navigation aid capable of
supplying accurate position and guidance information from ground level to
any operating altitude and throughout the mountainous terrain
characteristic of that state.

2., The system can be used effectively in conjunctiocn with conventional FAA
NAVAIDS for all phases of operations including departure, enroute,
terminal area and non-precisior approaches; thereby enhancing the utility
of air transportation and significantly increasing pilot confidence under
conditions of bad weather.
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3.

b,

5.

7.

Sufficient acouracy and redundancy of LORAN-C transmitters exists from the
Northeast chain to permit stand-alone LORAN-~C RNAV operations in Vermont
without compromising the safety and efficiency of the National Air Spaoce
System,

The opgiration of the Teledyne Systems Company TDL-T711 RNAV system does not
impose undue workload on the pilot, although there must be assurance of
completion of appropriate training and femiliarization just as with any
other ARINC-class RNAV systems (e.g.,inertial, Dopyler or Omega systems),

Airborne system reliability during more than 600 hours of inflight
operation of the RNAV equipment exceeded 99 percent, determined by
comparing the total time the system was operationally effective to %otal

time the system was turned on.

The use of a callbration value for improving accuracy in a general area,
particularly when using alternative triad configurations, and or use of a
parallel offset input for local bias correction, are appropriate and
effective operational procedures and can be accomplished without undue

workload,

The use of LORAN-C RNAV in remote or mountainous regions like Vermont is
fully compatible with the air traffic control system's requirements and

procedures and, in fact, can be used to markedly reduce controller
workload.

And finally, the data bases developed from airborne and ground test
instrimentation provide a sample sufficiently large to permit the FAA to
conduct limited certification of the Vermont E50 for enroute, terminal and
approach operations using LORAN-C RNAV equipment.
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APPENDIX A
LORAN~C PERFORMANCE CHARACTERISTICS

LORAN~C signals oconsist of pulse groups transmitted in rotation by the
stations in a chain, as illustrated in Figure A-1, By measuring TDs between
the times of arrival of the pulses generated by the master and secondary
stations within a chain, hyperbolic LOPs are established. TD measurements -
from two stations pairs yleld two LOPs whose intersection defines a position
fix, General LORAN-C system characteristics are summarized in Table A-1,

To achieve high-resolution position fixes, a LORAN receiver must track not
only individual pulse envelopes, but a particular radio frequency (RF) oycle
within a pulse, The third cycle zero orossing (see Figure A-2) is generally
used as the receiver tracking point: because it is the latest time in the
pulse when the signal is sufficiently strong and is free of skywave signal
interference., The third oycle is identified by the amplitude of the pulse
envelope at the third zero crossing, which is nominally 63 percent of the
pulse peak. '

A-1 SIGNAL CHARACTERISTICS

The major characteristics of the LORAN~C signal relevent to air navigation
are the signal coverage and the signal quality within the coverage area.
These characteristics can be related to a number of critical performance
parameters, as illustrated in Table A-2, These parameters represent the set
of observable quantities which can be measured via ground monitoring to ensure
that LORAN~C signal characteristics meet the requirements for air navigation.

A-1.1 Coverage
The authorized coverage area for each chain specified by the U.S. Coast
Guard is a function of three system parameters., These parameter3 are: 1)

signal-to-noise ratio (SNR) given in db, 2) LOP crossing angle (@) in degrees,
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TABLE A~1, LORAN-C SYSTEM CHARACTERISTICS

Signal Characteristics Pulsed, Hyperbolic
90 - 110 KHz
Accuracy
- Predictable 0.25 nm (2 drins)*
- Repeatable 18 - 90 Metres (2 drms)*
Availability > 99%
Coverage Most of U.S.;
Selected Overseas Areas
Fix Rate > 10 Fixes/Second
Fix Dimension 2 or More LOPs
Capacity Unlimited
Ambiguity Theoretically yes, but

easily resolved

*96% Probabi1ity.
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TABLE A-2, LORAN-C PERFORMANCE PARAMETERS

CHARACTERISTIC PARAMETERS UNITS
Signal - to - Noise Ratio (SNR) db
CCVERAGE Signal Strength db (Tuv/m)
Lop Crossing Angle (¢) degrees)
Signal Gradient (G) ft. /usec
Availability %
Spatial Propagation Anomalies M sec,
Multipath Anomalies U Sec,
Temporal Variations U sec.
Atmospheric Anomalies U sec.
SIGNAL Envelope - to - Cycle Discrepancy (ECD) U sec,
QUALITY In - Band Interference -
Cross - Chain Interference -
Skywave Contamination -

17




and 3) signal gradient (G), given in feet per microsecond, This last
parameter, G, represents the divergence between the hyperbolic LOP's, being
smallest along the baseline and becoming larger away from the baseline,
approaching divergence near the baseline extensions,.

The LORAN-C coverage area is defined by the following values of these
parameters:

1. SNR > - 10 db
2. O > 30 degrees
3. G < 2000 feet per microsecond

While @ and G are purely geometric parameters, SNR will vary, primarily
due to variations in the noise environment., The dominant source of noise in
the LF band is atmospheric noise, which is a function of geographic location,
season, time of day, and weather conditions. From available data, a
reasonable lower limit on the expected noise level is 45 db (1
microvolt/meter). To accomplish tracking at a minimum SNR of -10 db, a
minimum field strength for the LORAN-C gignal of 35 db (1 microvolt/meter) is

therefore required.

The Northeast U.S. chain (GRI 9960) provides coverage for Vermont, as
illustrated in Figure A-3. Table A-3 shows the location and transmitted power
of each transmitter in this chain. Expected signal strengths in Vermont can
be computed from transmitted power and distance using published attenuation
curves (Reference 4). Table A-Y4 gives the range of signal strengths
predicted at the Newport, VT data collection site for each station in the 9960
chain, The predictions are based on a likely variation of propagation path
conductivities ronging from very low values for poor soil, snow or ice, to
higher values for fresh water and good dry soil.

It can be seen from Table A--Y4 that Seneca, Caribou and Nantucket should
provide a large margin of signal strength to maintain -10db SNR relative to 45

db atmospheric ncise. Carolina Beach may provide adequate signal strength to
act as a backup station, while Dana is somewhat marginal.
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é Approximate Limits of Coverage — 1:3 SNR and
% % NM Fix Accuracy (95% 2dRMS)
{
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; @® MONITOR (AUTOMATED) Z DANA

FIGURE A-3. NORTHEAST LORAN-C CHAIN CONFIGURATION




TABLE A-3. NORTHEAST U.S.A. LORAN-C CHAIN (GRI 9960)
CODING DELAY RADIATED

STATION COORDINATES FUNCTION BASELINE LENGTH | PEAK POWER
Seneca 42-42-50,60 N Master N/A 800 kw
NY 76-49-33,06. W
Caribou 46-48-27.,20 N W 11,000 us 350 kw
ME 67-55-37.71 W Secpndary 2797.20 us
Nantucket 41-15-11.93 N X 25,000 us 275 kw
MA 69-58-39.09 W Secondary 1969.93 us
Carolina 34-03-46.04 N Y 39,000 us 550 kw
Beach NC 77-54-46.76 W Secondary 3221.65 us
Dana 39-51-07.54 N Z 54,000 us 400 kw
IND 87-29-12.14 W Secondary 3162.06 us
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TABLE A-4,

TYPICAL SIGNAL STRENGTHS COMPUTED FOR NEWPORT, VERMONT

SIGNAL STRENGTH -

TRANSMITTER db. ABOVE Tuv/m*
Seneca NY 69 - 75
Caribou ME 67 - 73
Nantucket MA 64 - 70
Carolina Beach NC 36 - 51
Dana IN 3™ 47

*Conductivity ranging from poor rocky soil
to good dry soil.

**Minimum signal strength required is 35 db
above Tuv/m Section A-1.
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Table A-5 shows geometric parameters for the three Vermont Airport
ground-test sites: Burlington, Newport and Rutland. A discussion of the
ground-test configuration is given in Section 2,3,4, The table shows the
gradient and bearing angle of the normal for each of the LOPs., Examination of
this table shows that the gradients are all within adequate limits: they are
less than the geometric limit of 2000 feet per microsecond., The crossing
angle for a pair of LOPs is determined by differencing the bearing angles of
the two normals, It can be seen that the Seneca-Caribou-Nantucket and
Seneca-Caribou~Carolina Beach triads have adequate crossing angles (43 to 50
degrees) but the Seneca-Nantucket-Carolina Beach triad has a crossing angle
less than 30 degrees at the two northern sites: Burlington and Newport.
Therefore, this backup triad could be marginal in northern Vermont.

The total availability of LORAN-C depends on the availability of the
primary and backup transmitter stations, The Coast Guard has established
objectives for LORAN-C station availability (Reference 7). On a monthly
basis, the objective is 99.7 percent for each station, which includes both
Scheduled and unscheduled outages., For purposes of supporting aviation
requirements, a station will be assumed to be out of service during actual
outages and during station blink, which is a special transmitted code used to
identify that the signal is unusable. A station may be operating under blink
conditions for any of the following reasons:

1. Operating at less than 50 percent of rated power
2. TD out of tolerance

3. ECD out of tolerance

i, Improper phase code or GRI

The above conditions are continuously monitored at the transmitters and at
the SAMs. It is anticipated that the availability objective of 99.7 percent
will be progressively easier to meet with the replacement of the old vacuum
tube transmitting equipment with new solid state transmitters. However, it
was noted that outages do occur, usually caused by power failures, tower

maintenance, or antenna coupler failures, and such outages can affect
operations over a wide area,
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TABLE A-5. LOP PARAMETERS FOR MONITOR SITES

i‘ SECONDARY
’ RECEIVER TRANSMITTER GRADIENT BEARING OF
Z LOCATION LOCATION (ft/micro sec) NORMAL (deg)
? Caribou 492 057
f Burlington Nantucket 668 100
} Carolina Beach - 1559 129
1 <
Caribou 492 057
Newport Nantucket 739 107
Carolina Beach « 1667 131
i Caribou 509 060
] Rutland Nantucket 567 105
: Carolina Beach 1134 140
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A-1.2 Signal Quality

The parameters which can be used as indicators of signal quality or listed
in Table A-2. Four of these parameters are propagation anomalies which sffect
the accuracy of the TD's: spatial propagation anomalies, multipath, temporal
(seasonal and diurnal) variations and atmospheric variations, Each of these
effects is considered in the folléwing paragraphs.

Spatial vropagation anomalies are functions of grownd conductivity along
the path and the length of the path, Sea watel has the liighest conductivity
values, fresh water and good dry soil paths have somewhat lower values. The
lowest conductivity values, corresponding to the lowest propagation velocities
are associated with poor soil, snow or ice, and urban areas. Spatial
propagation anomalies result in a shift of the LORAN-C grid from its
calculated position, based on a uniform conductivity model.

This grid shift will appear as a bias within a local region. As indicated
in Section 2.1 the primary trial was used without a bias correction and
exceeded all AC90-U45A accuracy requirements., As discussed in the following
Appendix, the minimum operational performance standards proposed for the low
cost airborne LORAN-C receivers include provisions for such propagation
anomaly corrections, It is assumed that such corrections will be either
computed by the airborne receiving equipment or will be computed offline and
supplied to the user equipment as precomputed offsets.

Multipath arises from signal reflections from mountains or large
structures. These perturbations appear as extremely localized bulges in the
LOP grid lines, In the case of buildings or other structures, these multipath
effects may be less noticeable in the air than on the ground, Multipath could
possibly be a problem in the vicinity of some airports, causing a position -
fix error during the final stages of approach. There was no evidence of a
multipath effect during any phase of flight at any of the airports used in the

Vermont test program.

124




Temporal propagation variations result from seasonal and diurnal changes
in ground conduotivity and atmospheric conditions, Both seasonal and diurnal
variations may have both area-wide and localized components., The SAMs,
maintained by the Coast Guard, remove some of the area-wide temporal
variations, because they monitor and control the TDs for their service areas.
However, since the LORAN-C chaln and SAMs are necessarily land based and the
primary service areas are usually in coastal waters, there can be significant
temporal variations of LORAN-C which would affect the airborne user, The
corrections for localized variations in the vicinity of the SAMs did not
deteriorate the navigation accuracyv of the user in the State of Vermont,

The final propagation effect considered is that of atmospherioc
meteorological occurrences, predominantly frontal weather systems, which can
introduce propagation anomalies in the affected paths. These effects tend to
be localized rather than area-wide, and the magnitudes of these errors are
usually small, Experience with the SAMs, however, has shown that such local
weather varlations can result in land phase adjustments which actually induae
errors in other parts of the grid. The induced errors in Vermont were small
becaude of good geometry,

Another signal quality parameter of interest is envelope-~to~cycle
difference (ECD). The LORAN~C pulse shape is monitored by the SAM and
controlled at the transmitter to maintain a envelope amplitude of 63 percent
of its peak value at the third-cycle zero crossing for a user in the primary
service area. The ECD is defined as the time that the 63 percent amplitude
point occurs on the envelope relative to the time of the third-cycle zero
crossing,

A user in other than the primary service area will usually observe ECD.,
If the ECD becomes too large (greater than 5 microseconds) the receiver may
8lip a cycle and lock onto tne wrong zero crossing. This will cause a 10
microsecond err.r in measured TD resulting in a large position error, as large
as 10,000 ft for the primary navigation triad in Vermont. Typically, the ECD
will vary from a specified value of less than +2.5 microseconds in the
vicinity of the transmitter to nearly zero in the primary service area. For
the Northeast U,S. chaln, the ECD values assigned at the SAM locations are
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listed in the Table A-6, Variations at the SAMa of more than 1.5 mioroseconds
from these nominal values will be flagged as abnormal, It is the goal of the
USCG to oontrol the ECDs to within 2.5 mioroseconds over the entire coverage
area to minimize the probability of oyole slip. A cycle slip will be
detectable in the low coast airborne LORAN-C receivers,

Another possible source of problems with LORAN-C is in-band or
adjacentwband interference, The U.S. Naval communication station at
Annapolis, MD brg¢' .casts at 88 kHz, just 2 kHz from the low end of the LORAN~C
band, Figure A-lU is a spectrum photograph of the LF band recorded at
Burlington, Vt during the Navy operation of its 88 kHz communication system.,
To prevent disruption of the LORAN-C signal, noteh filtering is required to
mask out this strong interfering source, A similar problem exists with
respect to 115.3 kHz communication broadcasts from Nova Scotia, Fortunately,
only a few such stations exist and appropriate notch filtering can adequately
alleviate this interference problem,

In-band interference can also be troubling. Although theie are no
broadcast transmissions in the LORAN-C band within the U,S., power companies
employ power line carrier (PLC) communications within the LF band to send
control signals along high voltage transmission lines to outlying stations.
Some of these transmissions fall within the LORAN-C bandwidth and can disrupt
operation of LORAN~C in the immediate vicinity of these transmission lines, an
discussed in Reference 8. At present, the only course of action is to avoid
operations near any such interfering source, Fortunately, these effects
should be quite small for aircraft at normal operating altitudes., The
potential for increased interference by the promulgation of PLC communications
by utilities should be considered, however, in assuming the adequacy of
LORAN-C to support eivil air navigation needs,

Another type of interference 1s cross-chain interference, which arises
when pulses from one GRI periodically interfere with pulses from another GRI.
This problem would be most severe when operating in the vieinity of a station
which is dual-rated, i.e., one which éperates as a member of two different
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TABLE A-6., ASSIGNED ECDs FOR THE NORTHEAST U,S. CHAIN
ASSIGNED ECD
STATION AT SAM (micro

K sec)

f Seneca +1.6

0 Caribou +1,8

5 Nantucket 10,2

i Carolina

? Beach +1.5

5 Dana +1.6

|

\ Tolerance +1.5

|

§

|

g
i

g
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chains, All of the stations in the Northeast U,S, chain are dual rated,

Within the existing U,S, chains, GRIs for adjacent chains are chosen to make
oross chain interference negligible, Continued careful seleotion of GRIs for
additional chains should keep oross-chain interfcrence from becoming a problem,

The final signal quality parameter is skywave contamination. The skywave
typloally arrives from 35 to 50 mioroseconds after the groundwave signal,
Within the U.S. coverage areas for LORAN~C, a properly operating receiver
locked onto the third oycle should experience no problems due to skywave
contamination., Thus, skywave interference is assumed here to be negligible
within the National Airspace System (NAS), and negligible in the State of
Vermont,
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APPENDIX B

LOW COST LORAN-C RECEIVER STUDY RESULTS

The FAA has sponsored a low cost general aviation receiver design study,
reported in Reference 5, The result of that study is a set of recommendations
for a receiver meeting minimum operational performance standards. These
recommendations are taken ds the baseline receiver performance characteristics.

As a result of tradeoff analyses, the low-cost receiver was selected to
have the relevant characteristics summarized in Table B-1, Additional design
parameters recommended in Reference 5 for this receiver are listed in Table
B-2, Some of the implications of these minimum operational performance
standards+as they affect ground-based testing requirements, are as follows:

1. Automatic tracking of two chains with up to five stations per chain,
along with capability for master independent operation, provides
automatic backup navigation capability transparent to the user.

2. Predicted receiver TD jitter of 150 nanoseconds (one sigma) at SNR =
~10 db, combined with predicted propagation secondary phase correction
accuracy of 250 ft. (one sigma), conforms to AC90-45A approach
specifiocations,

The alrborne user will require the LORAN~C navigation system to meet a
number of operational criteria, including:

1. Consistency of position fix after station changes:
- Traversing from one triad to another within a chain

-~ Traversing from one chain to another J

- Entering near-field of transmitters
- Backup operation (both in-chain and cross chain)
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%\ TABLE B-1, LOW-COST RECEIVER TRADEOFF RESULTS
3
!
%
! CHARACTERISTICS RECOMMENDAT IONS
{ Antenna Type Dual E-Field
: Antenna Couplers Wideband
Position Determination '
Technique Hyperbolic
Chains Tracked Twe, with cross-chain fix capability
Stations Tracked Up to five per chain
Propagation Encoded conductivity table; use Millington's
3 Compensation Method.
’ Master Dependency Master independent operation after master
outage
Interference Two fixed (88 & 115.3 kHz)
Filters
/
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TABLE B-2.

D i = LT,

RECEIVER PERFORMANCE PARAMETERS

PARAMETER VALUE

Receiver Sensitivity <10 pv
Signal to Noise Threshold

- Acquisition -10 db

- Track ~-14 db
No. of Stations tracked 10
simuTtaneously
Minimum signal level 100 4 v/m
Dynamic Range 90 db

Secondary Phase Correction
Accuracy

Near Field Avoidance Range

250 ft (Rms)

10 nm
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2. Receiver must be able to always choose the correct latitude and
longitude solution for each TD pair,

3. Separation minimums must be maintained between aircraft using

different chains in overlapping coverage areas.

i, Probability of undetected cycle slip (locking onto the wrong RF cycle)
occurrence should be negligible.

5. No degradation in performance during heavy precipitation static
(p-static) conditions.

Achieving adequate position fix consistency after station changes will
require rapid and accurate on-line problem detection and isolation, as well as
a consistent set of propagation corrections for all possible station
combinations at the same location. Maintaining adequate separation between
aircraft operating with different station combinations can also be assured by
providing consistent propagation corrections. However, since the enroute
accuracy requirements of AC90-45A are much less restrictive than the approach
requirements, it will be assumed that enroute separation minimums will be
easily malntained using LORAN~C if it can be shown that approach requirements

are met.
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APPENDIX C

ADDITIONAL ANALYSIS OF TWO FLIGHTS

In spite of all preiautions no system is immune to failure so it is still
of significant concern how a pilet should and is likely to react to a loss of
navigation information. One flight during the test program experienced the
fallure of the Nantucket station for approximately 6 minutes. On at least one
other flight several outages of much shorter duration occurred. These test
flights were being conducted under VFR rules and proceded without mishap, but
the circumstances of these failures indicate the need for careful study.

The primary problem concerns the information supplied to the pilot
regarding the failure. This information was discovered to be delayed,
confusing and contradictory. In a critical situation the pilot must know
immediately that a problem exists and the nature and likely duration of the
problem so that appropriate action can be taken, Changes in receiver software
design could alleviate most of the problems discussed here.

During an approach to MPV made on Flight BTV 362-1, Nantucket stopped
transmitting. The sequence of events that took place on this flight have been
depicted (Figure C-1) in parallel time lines for each relevent measurement
made.* Although the failure lasted approximately six minutes, during much of
this time the TDL-T11 receiver operated using the alternate triad with little
significant degradation of accuracy. However, the transitions from primary to
alternate triads and back to primary were lengthy and complex processes that
warrant closer examination.

It is important to note that delays between actual events, such as
signal/noise drop, and the detection and measurement of these events can be
significant; however the relative sequence of events in the aircraft is of
critical importance to this evaluation.
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At 20:22:26 both air and ground recorders indicate a rapid decline in SNB
(Nantucket signal/noise ratio) which subsequently remains at or near zero.*
The alternate triad is used beginning 18 seconds after SNB begins to fall, If
the pilot was aware within seconds that the signal was lost but that the
alternate triad was in track and would be providing information momentarily he
could probably have proceeded with little concern, even on an approach.
However, the first indication of failure came 10 seconds after SNB dropped
when the warning dots cume on., Five seconds later the CDI nsedle jumped off
the scale briefly then remained frozen approximately centered until 32 seconds
from the beginning of the incident. During this period the CDU display went
blank and the CDI warning t'lag switched on. This lasted until 52 seconds from
the loss of Nantucket, when the CDI warning flag disappeared and the CDU
blinking dots indicated an alternate triad was being used.

¥The values used in this report to describe signal/noise are those used by the
TDL-T17 receiver, These signal/noise numbers correspond to the more
conventional decibel zcale as follows:

LT~ - - W TV N

db 711 No.
-12 28
~10 30
-8 38
-6 42

Threshold for Acquisition
-4 52
-2 78
0 80
+2 92
+1 E1
+6 EY
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When the Nantucket signal returned and was reacquired by the system some
confusion was created, At 20:27:05 the SNB recorded in the air rose rapidly
from 0 to 55, somewhat lower than its earlier value of 70, The ground station
indicated that for several seconds prior to, and for more than a minute
following this, SNB was intermittent but always less than half of its prior
level, This may have been a problem with the equipment on the ground because
the airborne equipment did switch back to the primary triad soon after this.
Within 2 seconds of switching back to the primary triad the warning dots
stopped blinking and went on continously for 22 seconds; and the CDI needle
swung off the scale for 11 seconds.

The CDI warning flag appeared and the display blanked during the time the
dots were on and continued heyond the time the dots were off. Next, before
the display was restored the dots came on again for 5 seconds. When
everything finally appeared normal 35 seconds had elapsed since triad
switchover, The system settled down 25 seconds later when SNB rose from 55 to
70, but before this the dots came on for one more pericd of 9 seconds and the
screen blanked for 8§ seconds., For a full minute there was doubt as to the
reliability of the navigation information available, it appears that the
triad switch occurred following the initial SNB rise but should have waited
for the more reliable signal which followed more than a minute later.

This performance would have required an immediate missed approach under
actual IFR conditions. The indications of trouble should be made more timely
and consistent, the alternate triad sho.ld continue to be used until a strong
signal has returned and steps should be taken to reduce the transition time
from one triad to another. (However, if this transition had occured in the

enroute environment, it would be no more critical than overflying a VOR
station),

Several additional incidences during this flight are also interesting.
Twice the ground station reported drops in signal to noise of the master with
corresponding lapses in position information. The warning dots were displayed
after 9 and 7 seconds repectively and turned off follcwing the return of
signal strength, However, the dots appeared at two other times staying on for
14 and 22 seconds repectively when no S/N drop was indicated at either the
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ground station or by the airborne equipment., These indications correspond to
a leg change point, which required a turn of approximately 140 degrees, Due
to the accelerations experienced during this turn, the receiver may have been
unable to converge on a position fix., Earlier test have indicated that turns
of 3 degrees/sec and 6 degrees/sec do not cause an unlock condition to ococur
indicating the accelerations experienced here were much higher than would
normally be found during instrument operations,

Assuming the pilot had reliable status data, alternatives could be
specified and executed when called for. These range from switching to an
alternate triad to switching to a backup navigation mode, If use of an
alternate triad is possible without recalibration then éhis will be the first
choice. During the final phases of' an approach this switch might be cause for
increased minimums or even a missed approach to permit a new calibration value
to be entered. Should the alternate triad not be available, then an
alternative form of navigation should be used,

There was one occasion during the Vermont flight test program while
operating with the primary triad when a momentary transmitter outage caused
the TDL-711 to indicate that a calibration was required. The flight was BTV
355 and the relevant events of this flight are summarized in Table C-1.

Prior to flight 355 the need for a calibration was indicated and one was
performed while on the ground. Corrections of 1,438' south and 1.29' east
were required. Subsequently, an approach was made to BTV RW15 to validate
this calibration. The course flown was observed to be approximately 1/4 nm
left (northeast) of centerline. With the calibration removed a second
approach also proved to be unsatisfactory. An air calibration was then
performed over the threshold of the runway. Corrections of 1.4' south and
1.2' east were used., These are quite similar to the values found during the
ground calibration,

An approach at MVL was flown and again a 1/4 nm crosstrack error to the
east was observed., A third calibration conducted while over the MVL runway
threchold resulted in values of 1.1' south and 0.3' west. This calibration
proved to be accurate for approaches to Montpelier RW17 and Burlington RW15.
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TABLE C-1. SEQUENCE OF SIGNIFICANT EVENTS ON FLIGHT 355

CALIBRATIONS APPROACHES MOMENTARIES TIME

Dmeme—

g Caribou off air
; cycle slip on
» Nantucket occurred

3 {10 ms): 14:51
! Ground Calibration
5 entered: 15:02: 56
; Ground Calibration
i deleted: 15:07:25
First Approach '
to BTV (poor): 15:30
Master Off Air: 15:44:28
Air Calibration
over MAP @ BTY: 16:49:13
Approach to BTV: 15:49:13
Master Off Air
Cycle slip ACK
corrected
Caribou siipped
(10 ms): 15:50: 45
: Air Calibration
A deleted: 15:52:33
;¢ End approach MVL
| (poor): 16: 16
g Air Calibration: 16:36:19
b
X Approach MVL
(excellent): 16:44
i Approach MPV
i (excelient): 16:56
Approach BTV
5 RW15 TSCT =180ft: 17:16
1 (visual)
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Upon returning to the ground surveyed point at BTV and recalibrating,
corrections of ,238' south and ,21' west were measured -~ confirming the last
alr ocalibration.

Follow up investigation indicated that there may have been momentary
difficulties with the transmitters during the calibrations. A brief drop in
SNA was recorded both on the ground and in the aircraft during the period when
the recelver was attempting to loock onto the signals, The USCG station log
confirmed this momentary at Caribou, ME., When signal lock finally oocourred

the envelope status of B (Nantucket) was much lower than normal (approximately
30 to 40), The ground calibration was made following this and the TDB found to
be 10.6 inicroseconds in error, Apparently, a cycle slip had ocourred since
this time corresponds to one cycle.

This cycle slip condition continued until the second momentary experienced
by the master station around 15:51, While relocking, following this

momentary, the cycle slip on the Nantucket signal was corrected; however, just ;

prior to this the tracking of the Caribou station slipped one cycle., It is
interesting to note that the earlier momentary around 15:44 did not stimulate
any slippage or correction of slippage; this may be due to the shorter
duration of that event,

During both cycle slips the corresponding envelope numbers were
significantly different from their usual values. Although recordings of the
precise signal characteristics during this period are not available, it is
likely that they were distorted in some way that made it difficult for the
receiver to lock on properly. However, the dramatic shifts in envelope
numbers should have provided an indication to the tracking software that a
problem existed,

The incident indicates that momentaries can cause cycle slip under certain
circumstances which indicates the need for further study of this phenomenon.
However, procedural solutions to this problem could prove tc be adequate, A
calibration value as large as the one required should be an indication to the

v !

pilot that a problem may exist -~ particularly following a momentary. \

140



S E R

e

s

3 e ma o e

MRS T £ 4 Sl e b -

Operating procedures should call for resetting the receiver and allowing 1t to
relock before entering a calibration., In addition, the warning dots or
display flag should be triggered when envelope numbers are out of tolerance to

notify the pilot of the possible malfunction.

An additional malfunotion was observed during the analysis of this flight
which can be corrected through software modifications., The first two
calibrations entered on the ground and inflight should have compensated for
the ocyocle slip condition as long as it remained constant. However, the ground
calibration did not appear to suffice during the first approach to BTV,

Upon closaer examination it was determined that the calibration values
entered prior to takeoff had been erased, This ocourred again following the
airborne calibration, In both cases, events prior to the deletion were
similar, indicating a possible explanation., Table C-2 is a list of the events
surrounding these deletions. As seen here, after the calibration had been
completed the pilot began entering a waypoint definition. In both cases,
however, he began entering the latitude ana the longitude of the waypoint
while in TD mode. Noticing the error before completing the entry he switched
to L/L mode before erasing the erroneous data, Apparently, rather than
clearing the incomplete TD fields, the area calibration contained in waypoint
zero was deleted instead.

Modifications should be made to eliminate this potential source of error.
A light indicating that a calibration is in use would also be helpful since it
would have prevented this problem and would also warn a pilot that an earlier
calibration was still present even though the need for it had passed.

The difficulties experienced with area calibration strengthen the argument
that all calibration values should be stored in the computer and used
automaticalliy. Since negligable time variation in grid bias has been
measured, and since a single calibration value for each triad is valid over a
wide region, permanently stored values are clearly the best choice.
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TABLE C-2, EVENTS SURROUNDING THE DELETION OF AREA
CALIBRATION VALUE ON FLIGHT 355

Calibration:

Switch to enter mode (L/L): 15:00:23
Set to W/P 0: 15:00:28
Enter L/L and switch to TD: 16:01: 16
Complete TD entry, switch to L/L

to check: 15:03:18
Complete check, switch to,

Dist/Brg mode: 15:05:56
Switch to TD mode: 15:06:04

Enter W/P:

Switch to enter mode

(still in TD): 15:06:27
Set to W/P 1: 15:06:29
Enter data (mistakenly)

Switch to L/L: 15:07:20
WPO deleted: 16:07:25

Second Example (Final Steps)

Switch to enter mode

(sti11 in TD): 15:51:59
Enter data (mistakenly)

Switch to L/L: 15:52:27
WPO deleted: 16:52:33

142




REFERENCES
'+ DePalma, L,M., Gupta, R,R., "Seasonal Sensitivity Analysis of the St,
Marys River LORAN-C Time Difference Grid", CG~D-33-80, June 1978

2, Campbell, L.W., Doherty, R.H,, Johler, J,R.,, "LORAN-~C System Dynamic
Model: Temporal Propagation Variation Study", DOT-CG~D57=79, July 1979.

3., Federal Radionavigation Plan, DOT-TSC~RKSPA-80-16, July 1980,

i, Advisory Circular AC90-U45A, "Approval of Area Navigation Systems for use
in the U,8. National Airspace System", DOT, FAA, 1975.

5., "Design Study Report for General Aviation LORAN-C Receiver", Draft,
Teledyne Systems Co., Feb.1981.

6, LORAN-C System Description, WGA Radionavigation Journal, 1975.

7. "Specification of the LORAN-C Transmitted Signal", Draft, U,S. Coast
Guard y Aug, 19790

8. Mauro, P.G., Gakis, J.D., "The Effects of Primary Power Transmission Lines
on the Performance of LORAN-C Recelvers in Experimental Terrestrial
Applications¥, DOT-TSC-RSPA-79-8, Oct. 1979,

9, Mauro, P,G., "LORAN-C Grid Variations in the North Central Area of
Vermont", Material on file at DOT/TSC.

330 copies

1437144 ®* U,§ O JERNMENT PRINTING OFFICE: 1061 500-205/100

RemTImE EIATEC S - e




	0011A03.pdf
	0011A04.pdf
	0011A05.pdf
	0011A06.pdf
	0011A07.pdf
	0011A08.pdf
	0011A09.pdf
	0011A10.pdf
	0011A11.pdf
	0011A12.pdf
	0011A13.pdf
	0011A14.pdf
	0011B01.pdf
	0011B02.pdf
	0011B03.pdf
	0011B04.pdf
	0011B05.pdf
	0011B06.pdf
	0011B07.pdf
	0011B08.pdf
	0011B09.pdf
	0011B10.pdf
	0011B11.pdf
	0011B12.pdf
	0011B13.pdf
	0011B14.pdf
	0011C01.pdf
	0011C02.pdf
	0011C03.pdf
	0011C04.pdf
	0011C05.pdf
	0011C06.pdf
	0011C07.pdf
	0011C08.pdf
	0011C09.pdf
	0011C10.pdf
	0011C11.pdf
	0011C12.pdf
	0011C13.pdf
	0011C14.pdf
	0011D01.pdf
	0011D02.pdf
	0011D03.pdf
	0011D04.pdf
	0011D05.pdf
	0011D06.pdf
	0011D07.pdf
	0011D08.pdf
	0011D09.pdf
	0011D10.pdf
	0011D11.pdf
	0011D12.pdf
	0011D13.pdf
	0011D14.pdf
	0011E01.pdf
	0011E02.pdf
	0011E03.pdf
	0011E04.pdf
	0011E05.pdf
	0011E06.pdf
	0011E07.pdf
	0011E08.pdf
	0011E09.pdf
	0011E10.pdf
	0011E11.pdf
	0011E12.pdf
	0011E13.pdf
	0011E14.pdf
	0011F01.pdf
	0011F02.pdf
	0011F03.pdf
	0011F04.pdf
	0011F05.pdf
	0011F06.pdf
	0011F07.pdf
	0011F08.pdf
	0011F09.pdf
	0011F10.pdf
	0011F11.pdf
	0011F12.pdf
	0011F13.pdf
	0011F14.pdf
	0011G01.pdf
	0011G02.pdf
	0011G03.pdf
	0011G04.pdf
	0011G05.pdf
	0011G06.pdf
	0011G07.pdf
	0011G08.pdf
	0011G09.pdf
	0011G10.pdf
	0011G11.pdf
	0011G12.pdf
	0011G13.pdf
	0011G14.pdf
	0012A03.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0012D06.pdf
	0012D07.pdf
	0012D08.pdf
	0012D09.pdf
	0012D10.pdf
	0012D11.pdf
	0012D12.pdf
	0012D13.pdf
	0012D14.pdf
	0012E01.pdf
	0012E02.pdf
	0012E03.pdf
	0012E04.pdf
	0012E05.pdf
	0012E06.pdf
	0012E07.pdf
	0012E08.pdf
	0012E09.pdf
	0012E10.pdf
	0012E11.pdf
	0012E12.pdf
	0012E13.pdf
	0013D12.pdf



