23 research outputs found

    Kinetic modeling of tumor growth and dissemination in the craniospinal axis: implications for craniospinal irradiation

    Get PDF
    BACKGROUND: Medulloblastoma and other types of tumors that gain access to the cerebrospinal fluid can spread throughout the craniospinal axis. The purpose of this study was to devise a simple multi-compartment kinetic model using established tumor cell growth and treatment sensitivity parameters to model the complications of this spread as well as the impact of treatment with craniospinal radiotherapy. METHODS: A two-compartment mathematical model was constructed. Rate constants were derived from previously published work and the model used to predict outcomes for various clinical scenarios. RESULTS: The model is simple and with the use of known and estimated clinical parameters is consistent with known clinical outcomes. Treatment outcomes are critically dependent upon the duration of the treatment break and the radiosensitivity of the tumor. Cross-plot analyses serve as an estimate of likelihood of cure as a function of these and other factors. CONCLUSION: The model accurately describes known clinical outcomes for patients with medulloblastoma. It can help guide treatment decisions for radiation oncologists treating patients with this disease. Incorporation of other treatment modalities, such as chemotherapy, that enhance radiation sensitivity and/or reduce tumor burden, are predicted to significantly increase the probability of cure

    Combined treatment modality for intracranial germinomas: results of a multicentre SFOP experience

    Get PDF
    Conventional therapy for intracranial germinomas is craniospinal irradiation. In 1990, the Société Française d'Oncologie Pédiatrique initiated a study combining chemotherapy (alternating courses of etoposide–carboplatin and etoposide–ifosfamide for a recommended total of four courses) with 40 Gy local irradiation for patients with localized germinomas. Metastatic patients were allocated to receive low-dose craniospinal radiotherapy. Fifty-seven patients were enrolled between 1990 and 1996. Forty-seven had biopsy-proven germinoma. Biopsy was not performed in ten patients (four had diagnostic tumour markers and in six the neurosurgeon felt biopsy was contraindicated). Fifty-one patients had localized disease, and six leptomeningeal dissemination. Seven patients had bifocal tumour. All but one patient received at least four courses of chemotherapy. Toxicity was mainly haematological. Patients with diabetus insipidus (n = 25) commonly developed electrolyte disturbances during chemotherapy. No patient developed tumour progression during chemotherapy. Fifty patients received local radiotherapy with a median dose of 40 Gy to the initial tumour volume. Six metastatic patients, and one patient with localized disease who stopped chemotherapy due to severe toxicity, received craniospinal radiotherapy. The median follow-up for the group was 42 months. Four patients relapsed 9, 10, 38 and 57 months after diagnosis. Three achieved second complete remission following salvage treatment with chemotherapy alone or chemo-radiotherapy. The estimated 3-year survival probability is 98% (CI: 86.6–99.7%) and the estimated 3-year event-free survival is 96.4% (CI: 86.2–99.1%). This study shows that excellent survival rates can be achieved by combining chemotherapy and local radiotherapy in patients with non-metastatic intracranial germinomas. © 1999 Cancer Research Campaig

    Intracranial germinoma presenting as polyradiculopathy due to widespread spinal dissemination.

    No full text
    Contains fulltext : 50810.pdf (publisher's version ) (Closed access

    Molecularly Smooth Self-Assembled Monolayer for High-Mobility Organic Field-Effect Transistors

    No full text
    Despite the need for molecularly smooth self-assembled monolayers (SAMs) on silicon dioxide surfaces (the most common dielectric surface), current techniques are limited to nonideal silane grafting. Here, we show unique bioinspired zwitterionic molecules forming a molecularly smooth and uniformly thin SAM in “water” in <1 min on various dielectric surfaces, which enables a dip-coating process that is essential for organic electronics to become reality. This monomolecular layer leads to high mobility of organic field-effect transistors (OFETs) based on various organic semiconductors and source/drain electrodes. A combination of experimental and computational techniques confirms strong adsorption (<i>W</i><sub>ad</sub> > 20 mJ m<sup>–2</sup>), uniform thickness (∼0.5 or ∼1 nm) and orientation (all catechol head groups facing the oxide surface) of the “monomolecular” layers. This robust (strong adsorption), rapid, and green SAM represents a promising advancement toward the next generation of nanofabrication compared to the current nonuniform and inconsistent polysiloxane-based SAM involving toxic chemicals, long processing time (>10 h), or heat (>80 °C)
    corecore