163 research outputs found

    Driven Morse Oscillator: Model for Multi-photon Dissociation of Nitrogen Oxide

    Full text link
    Within a one-dimensional semi-classical model with a Morse potential the possibility of infrared multi-photon dissociation of vibrationally excited nitrogen oxide was studied. The dissociation thresholds of typical driving forces and couplings were found to be similar, which indicates that the results were robust to variations of the potential and of the definition of dissociation rate. PACS: 42.50.Hz, 33.80.WzComment: old paper, 8 pages 6 eps file

    Quantum Dynamics of Spin Wave Propagation Through Domain Walls

    Get PDF
    Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems

    New, Highly Accurate Propagator for the Linear and Nonlinear Schr\"odinger Equation

    Full text link
    A propagation method for the time dependent Schr\"odinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde's usually results in system of ode's of the form u_t -Gu = s where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schr\"odinger equation with time-dependent potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page

    Equation of state for polymer liquid crystals: theory and experiment

    Full text link
    The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals. We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the system. We find that the configurational entropic part of the free energy enhances the effective repulsive interactions between the chains. This configurational contribution goes as the fourth root of the direct interactions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover 5 orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is a new and alternative way of measuring effective charge densities along semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR

    A twist in chiral interaction between biological helices

    Get PDF
    Using an exact solution for the pair interaction potential, we show that long, rigid, chiral molecules with helical surface charge patterns have a preferential interaxial angle ~((RH)^1/2)/L, where L is the length of the molecules, R is the closest distance between their axes, and H is the helical pitch. Estimates based on this formula suggest a solution for the puzzle of small interaxial angles in a-helix bundles and in cholesteric phases of DNA.Comment: 7 pages, 2 figures, PDF file onl

    Extended Gaussian wave packet dynamics

    Get PDF
    We examine an extension to the theory of Gaussian wave packet dynamics in a one-dimensional potential by means of a sequence of time dependent displacement and squeezing transformations. Exact expressions for the quantum dynamics are found, and relationships are explored between the squeezed system, Gaussian wave packet dynamics, the time dependent harmonic oscillator, and wave packet dynamics in a Gauss-Hermite basis. Expressions are given for the matrix elements of the potential in some simple cases. Several examples are given, including the propagation of a non-Gaussian initial state in a Morse potential

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 Ό\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    Genomic basis of the differences between cider and dessert apple varieties

    Get PDF
    Unravelling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8K SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds

    Ti-Modified Imogolite Nanotubes as Promising Photocatalyst 1D Nanostructures for H2 Production

    Get PDF
    Imogolite nanotubes (INTs) are predicted as a unique 1D material with spatial separation of conduction and valence band edges but their large band gaps have inhibited their use as photocatalysts. The first step toward using these NTs in photocatalysis and exploiting the polarization-promoted charge separation across their walls is to reduce their band gap. Here, the modification of double-walled aluminogermanate INTs by incorporation of titanium into the NT walls is explored. The precursor ratio x = [Ti]/([Ge]+[Ti]) is modulated between 0 and 1. Structural and optical properties are determined at different scales and the photocatalytic performance is evaluated for H2 production. Although the incorporation of Ti atoms into the structure remains limited, the optimal condition is found around x = 0.4 for which the resulting NTs reveal a remarkable hydrogen production of ≈1500 ”mol g−1 after 5 h for a noble metal-free photocatalyst, a 65-fold increase relative to a commercial TiO2-P25. This is correlated to a lowering of the recombination rate of photogenerated charge carriers for the most active structures. These results confirm the theoretical predictions regarding the potential of modified INTs as photoactive nanoreactors and pave the way for investigating and exploiting their polarization properties for energy applications

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
    • 

    corecore