1,583 research outputs found

    Marine Biodiversity Data Flow in the UK

    Get PDF
    The report provides a review of the current level of exchange in marine life data and its management in the UK taking into account the current structures that are in place between data providers, custodians and managers. In addition, the report makes recommendations on how data flow can be improved over the next few years to achieve greater exchange and interoperability within the marine sector

    Predicting the Consequences of MMOD Penetrations on the International Space Station

    Get PDF
    The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models

    Quantum Decoherence in a D-Foam Background

    Get PDF
    Within the general framework of Liouville string theory, we construct a model for quantum D-brane fluctuations in the space-time background through which light closed-string states propagate. The model is based on monopole and vortex defects on the world sheet, which have been discussed previously in a treatment of 1+1-dimensional black-hole fluctuations in the space-time background, and makes use of a T-duality transformation to relate formulations with Neumann and Dirichlet boundary conditions. In accordance with previous general arguments, we derive an open quantum-mechanical description of this D-brane foam which embodies momentum and energy conservation and small mean energy fluctuations. Quantum decoherence effects appear at a rate consistent with previous estimates.Comment: 16 pages, Latex, two eps figures include

    Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements

    Get PDF
    Includes bibliographical references (page 901).Differential carrier lifetime measurements were performed on index-guided oxide-confined vertical cavity surface emitting lasers operating at 980 nm. Lifetimes were extracted from laser impedance measurements at subthreshold currents, with device size as a parameter, using a simple small-signal model. The carrier lifetimes ranged from 21 ns at 9 µA, to about 1 ns at a bias close to threshold. For a 6 × 6 µm2 oxide aperture device the threshold carrier density was nth ~ 2 × 1018cm-3. The effect of carrier diffusion was also considered. An ambipolar diffusion coefficient of D ~ 11 cm2s-1 was obtained.Work at Texas Tech is supported by BMDO (monitored by Lou Lome), DARPA, and the J. F. Maddox Foundation

    Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Get PDF
    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes

    Index guiding dependent effects in implant and oxide confined vertical-cavity lasers

    Get PDF
    Includes bibliographical references.Implant and oxide confined vertical-cavity surface-emitting lasers are compared in terms of properties dependent upon the nature of index guiding in the two structures including CW threshold current scaling with size, light-current linearity, pulsed operation delay, and beam profiles. The oxide confined lasers, fabricated by wet thermal oxidation, have a built-in index guide and thus exhibit substantially better properties than do lasers from the same wafer fabricated by proton implantation which rely on a thermal lens to reduce diffraction losses.This work was supported by the U.S. Department of Energy under Contract DEAC04-94AL85000

    Temperature-dependent characteristics and single-mode performance of AlGaInP-based 670-690-nm vertical-cavity surface-emitting lasers

    Get PDF
    Includes bibliographical references.We report on temperature dependent characteristics and single mode performance of one-wave cavity, planar implanted, AlGaInP-based vertical-cavity surface emitting lasers. By optimizing the overlap between the gain peak and the cavity mode of the structure, we demonstrate record device performance, including 8.2 mW maximum output power and 11% power conversion efficiency for multimode operation and 1.9 mW and 9.6% power conversion efficiency for single mode operation at 687 nm. Improved performance at elevated temperatures is also achieved, with 1.5 mW output power demonstrated at 50 °C from a 15-μm-diameter device.This letter was supported by the US Department of Energy under contract no. DE-AC04-94AL85000
    corecore