472 research outputs found

    Stochastic Ergodicity Breaking: a Random Walk Approach

    Full text link
    The continuous time random walk (CTRW) model exhibits a non-ergodic phase when the average waiting time diverges. Using an analytical approach for the non-biased and the uniformly biased CTRWs, and numerical simulations for the CTRW in a potential field, we obtain the non-ergodic properties of the random walk which show strong deviations from Boltzmann--Gibbs theory. We derive the distribution function of occupation times in a bounded region of space which, in the ergodic phase recovers the Boltzmann--Gibbs theory, while in the non-ergodic phase yields a generalized non-ergodic statistical law.Comment: 5 pages, 3 figure

    Stabilization of tetragonal/cubic phase in Fe doped Zirconia grown by atomic layer deposition

    Full text link
    Achieving high temperature ferromagnetism by doping transition metals thin films is seen as a viable approach to integrate spin-based elements in innovative spintronic devices. In this work we investigated the effect of Fe doping on structural properties of ZrO2 grown by atomic layer deposition (ALD) using Zr(TMHD)4 for Zr and Fe(TMHD)3 for Fe precursors and ozone as oxygen source. The temperature during the growth process was fixed at 350{\deg}C. The ALD process was tuned to obtain Fe doped ZrO2 films with uniform chemical composition, as seen by time of flight secondary ion mass spectrometry. The control of Fe content was effectively reached, by controlling the ALD precursor pulse ratio, as checked by X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry. From XPS, Fe was found in Fe3+ chemical state, which maximizes the magnetization per atom. We also found, by grazing incidence X-ray diffraction, that the inclusion of Fe impurities in ZrO2 induces amorphization in thin ZrO2 films, while stabilizes the high temperature crystalline tetragonal/cubic phase after rapid thermal annealing at 600{\deg}C.Comment: 11 pages, 7 figures, 1 Tabl

    Laser-Based Primary Thermometry: A Review

    Get PDF
    Laser-based primary thermometry was initiated almost 15 years ago by the proposal to determine the absolute temperature of a gas at thermodynamic equilibrium through the Doppler width of an associated absorption transition, exploiting the potentially very accurate measurement of an optical frequency to infer the elusive thermal energy of a molecular or atomic absorber. This approach, commonly referred to as Doppler broadening thermometry, has benefited across the years from substantial improvements, of both technical and fundamental nature, eventually reaching an accuracy of about 10 ppm on the temperature determination in the best cases. This is sufficient for Doppler broadening thermometry to play a significant role in the practical realization of the new kelvin, which follows the 2019's redefinition from a fixed value of the Boltzmann constant, and to tackle the challenge, among others, to quantify and possibly fix systematic uncertainties of the international temperature scale of 1990. This paper reviews and comparatively analyzes methods and results achieved so far in the field of laser-based primary thermometry, also including spectroscopic approaches that leverage the temperature-dependent distribution of line intensities and related absorbances across the rovibrational band of a molecular sample. Although at an early stage of development, these approaches show a promising degree of robustness with respect to the choice of the line-shape model adopted for the fitting of the absorption spectra, which is a delicate aspect for all laser-based thermometers. We conclude by identifying possible technical and scientific evolution axes of the current scenario.& nbsp;Published by AIP Publishing on behalf of the National Institute of Standards and Technology

    Dual random fragmentation and coagulation and an application to the genealogy of Yule processes

    Full text link
    The purpose of this work is to describe a duality between a fragmentation associated to certain Dirichlet distributions and a natural random coagulation. The dual fragmentation and coalescent chains arising in this setting appear in the description of the genealogy of Yule processes.Comment: 14 page

    Risk-Informed design process of the IRIS reactor

    Get PDF
    Westinghouse is currently conducting the pre-application licensing of the International Reactor Innovative and Secure (IRIS). The design philosophy of the IRIS has been based on the concept of Safety-by-DesignTM and within this framework the PSA is being used as an integral part of the design process. The basis for the PSA contribution to the design phase of the reactor is the close iteration between the PSA team and the design and safety analysis team. In this process the design team is not only involved in the initial phase of providing system information to the PSA team, allowing in this way the identification of the high risk scenarios, but it is also receiving feedback from the PSA team that suggests design modification aimed at reaching risk-related goals. During the first iteration of this process, the design modifications proposed by the PSA team allowed reducing the initial estimate of Core Damage Frequency (CDF) due to internal events from 2E-6/ry to 2E-8/ry. Since the IRIS design is still in a development phase, a number of assumptions have to be confirmed when the design is finalized. Among key assumptions are the success criteria for both the accident sequences analyzed and the systems involved in the mitigation strategies. The PSA team developed the initial accident sequence event trees according to the information from the preliminary analysis and feasibility studies. A recent coupling between the RELAP and GOTHIC codes made possible the actual simulation of all LOCA sequences identified in the first draft of the Event Trees. Working in close coordination, the PSA and the safety analysis teams developed a matrix case of sequences not only with the purpose of testing the assumed success criteria, but also with the perspective of identifying alternative sequences developed mainly by relaxing the extremely conservative assumptions previously made. The results of these simulations, bounded themselves with conservative assumptions on the Core Damage definition, suggested two new versions of the LOCA Event Tree with two possible configurations of the Automatic Depressurization System. The new CDF has been evaluated for both configurations and the design team has been provided with an additional and risk-related perspective that will help choosing the design alternative to be implemented

    A Stimulated Raman Loss spectrometer for metrological studies of quadrupole lines of hydrogen isotopologues

    Get PDF
    We discuss layout and performance of a high-resolution Stimulated Raman Loss spectrometer that has been newly developed for accurate studies of spectral lineshapes and line center frequencies of hydrogen isotopologues and in general of Raman active transitions. Thanks to the frequency comb calibration of the detuning between pump and Stokes lasers and to an active alignment of the two beams, the frequency accuracy is well below 100 kHz. Over the vertical axis the spectrometer benefits from shot-noise limited detection, signal enhancement via multipass cell, active flattening of the spectral baseline and measurement times of few seconds over spectral spans larger than 10 GHz. Under these conditions an efficient averaging of Raman spectra is possible over long measurement times with minimal distortion of spectral lineshapes. By changing the pump laser, transitions can be covered in a very broad frequency span, from 50 to 5000 cm−1\mathrm{cm^{-1}}, including both vibrational and rotational bands. The spectrometer has been developed for studies of fundamental and collisional physics of hydrogen isotopologues and has been recently applied to the metrology of the Q(1) 1-0 line of H2\mathrm{H_2}
    • …
    corecore