487 research outputs found
Long-Lived Spin Coherence States
We study evolution of electron spin coherence having non-homogeneous
direction of spin polarization vector in semiconductor heterostructures. It is
found that the electron spin relaxation time due to the D'yakonov-Perel'
relaxation mechanism essentially depends on the initial spin polarization
distribution. This effect has its origin in the coherent spin precession of
electrons diffusing in the same direction. We predict a long spin relaxation
time of a novel structure: a spin coherence standing wave and discuss its
experimental realization
Adsorption of malachite green and alizarin red s dyes using fe-btc metal organic framework as adsorbent
Synthetic organic dyes are widely used in various industrial sectors but are also among the most harmful water pollutants. In the last decade, significant efforts have been made to develop improved materials for the removal of dyes from water, in particular, on nanostructured adsorbent materials. Metal organic frameworks (MOFs) are an attractive class of hybrid nanostructured materials with an extremely wide range of applications including adsorption. In the present work, an iron-based Fe-BTC MOF, prepared according to a rapid, aqueous-based procedure, was used as an adsorbent for the removal of alizarin red S (ARS) and malachite green (MG) dyes from water. The synthesized material was characterized in detail, while the adsorption of the dyes was monitored by UV-Vis spectroscopy. An optimal adsorption pH of 4, likely due to the establishment of favor-able interactions between dyes and Fe-BTC, was found. At this pH and at a temperature of 298 K, adsorption equilibrium was reached in less than 30 min following a pseudo-second order kinetics, with kâ of 4.29 Ă 10â3 and 3.98 Ă 10â2 gâmgâ1 minâ1 for ARS and MG, respectively. The adsorption isotherm followed the Langmuir model with maximal adsorption capacities of 80 mgâgâ1 (ARS) and 177 mgâgâ1 (MG), and KL of 9.30â103 Lâmgâ1 (ARS) and 51.56â103 Lâmgâ1 (MG)
Mode Spectroscopy and Level Coupling in Ballistic Electron Waveguides
A tunable quantum point contact with modes occupied in both transverse
directions is studied by magnetotransport experiments. We use conductance
quantization of the one-dimensional subbands as a tool to determine the mode
spectrum. A magnetic field applied along the direction of the current flow
couples the modes. This can be described by an extension of the Darwin-Fock
model. Anticrossings are observed as a function of the magnetic field, but not
for zero field or perpendicular field directions, indicating coupling of the
subbands due to nonparabolicity in the electrical confinement.Comment: 4 pages, 3 figure
Spin-orbit interaction and spin relaxation in a two-dimensional electron gas
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a
two-dimensional electron gas in an InGaAs quantum well is measured. Including
measurements of the electron mobility, the Dresselhaus and Rashba coefficients
are determined as a function of temperature between 10 and 80 K. By comparing
the relative size of these terms with a measured in-plane anisotropy of the
spin dephasing rate, the D'yakonv-Perel' contribution to spin dephasing is
estimated. The measured dephasing rate is significantly larger than this, which
can only partially be explained by an inhomogeneous g-factor.Comment: 6 pages, 5 figure
Variation of elastic scattering across a quantum well
The Drude scattering times of electrons in two subbands of a parabolic
quantum well have been studied at constant electron sheet density and different
positions of the electron distribution along the growth direction. The
scattering times obtained by magnetotransport measurements decrease as the
electrons are displaced towards the well edges, although the lowest-subband
density increases. By comparing the measurements with calculations of the
scattering times of a two-subband system, new information on the location of
the relevant scatterers and the anisotropy of intersubband scattering is
obtained. It is found that the scattering time of electrons in the lower
subband depends sensitively on the position of the scatterers, which also
explains the measured dependence of the scattering on the carrier density. The
measurements indicate segregation of scatterers from the substrate side towards
the quantum well during growth.Comment: 4 pages, 4 figure
MHz Unidirectional Rotation of Molecular Rotary Motors
A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions
Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers
The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from l-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by l-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals. This journal i
Electronic spin precession in semiconductor quantum dots with spin-orbit coupling
The electronic spin precession in semiconductor dots is strongly affected by
the spin-orbit coupling. We present a theory of the electronic spin resonance
at low magnetic fields that predicts a strong dependence on the dot occupation,
the magnetic field and the spin-orbit coupling strength. Coulomb interaction
effects are also taken into account in a numerical approach.Comment: 5 pages, 4 figure
Electronic structure of nuclear-spin-polarization-induced quantum dots
We study a system in which electrons in a two-dimensional electron gas are
confined by a nonhomogeneous nuclear spin polarization. The system consists of
a heterostructure that has non-zero nuclei spins. We show that in this system
electrons can be confined into a dot region through a local nuclear spin
polarization. The nuclear-spin-polarization-induced quantum dot has interesting
properties indicating that electron energy levels are time-dependent because of
the nuclear spin relaxation and diffusion processes. Electron confining
potential is a solution of diffusion equation with relaxation. Experimental
investigations of the time-dependence of electron energy levels will result in
more information about nuclear spin interactions in solids
Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well
We employ a magnetocapacitance technique to study the spectrum of the soft
two-subband (or double-layer) electron system in a parabolic quantum well with
a narrow tunnel barrier in the centre. In this system unbalanced by gate
depletion, at temperatures T\agt 30 mK we observe two sets of quantum
oscillations: one originates from the upper electron subband in the
closer-to-the-gate part of the well and the other indicates the existence of
common gaps in the spectrum at integer fillings. For the lowest filling factors
and , both the common gap presence down to the point of one- to
two-subband transition and their non-trivial magnetic field dependences point
to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be
published in JETP Let
- âŠ