9,918 research outputs found

    THE COST OF INACCURATE CONSUMER INFORMATION: THE CASE OF THE EPA MILEAGE FIGURES

    Get PDF
    In this study a utility maximizing model is developed which accommodates changing states of information. Rational consumer choices in one state of information can lead to realizing different levels of utility than anticipated. Differences between these levels of utility suggest a measure for the value of information. This framework is applied to estimating the potential cost of possible inaccuracies in the EPA fuel-economy ratings. Survey data collected from new car buyers then are used to infer the magnitude of the actual costs that may be caused by the present EPA information.Consumer/Household Economics,

    Unification of some advection schemes in two dimensions

    Get PDF
    The relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of the control volume type applicable on structured cartesian meshes. It resulted in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases. Another one is the fluctuation splitting approach, which is well suited for triangular (and possibly) unstructured meshes. Understanding the relationship between these two approaches allows us to formulate here a new fluctuation splitting high resolution (i.e. possible use of artificial compression, while maintaining positivity property) scheme. This scheme is shown to be linearity preserving in inhomogeneous as well as homogeneous cases

    Direct measurement of the size of 2003 UB313 from the Hubble Space Telescope

    Get PDF
    We have used the Hubble Space Telescope to directly measure the angular size of the large Kuiper belt object 2003 UB313. By carefully calibrating the point spread function of a nearby field star, we measure the size of 2003 UB313 to be 34.3±\pm1.4 milliarcseconds, corresponding to a diameter of 2400±\pm100 km or a size 5\sim5% larger than Pluto. The V band geometric albedo of 2003 UB313 is 86±786\pm7%. The extremely high albedo is consistent with the frosty methane spectrum, the lack of red coloring, and the lack of observed photometric variation on the surface of 2003 UB313. Methane photolysis should quickly darken the surface of 2003 UB313, but continuous evaporation and redeposition of surface ices appears capable of maintaining the extreme alebdo of this body

    Automated identification of neurons and their locations

    Full text link
    Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x,y) location of individual neurons within digitized images of Nissl-stained, 30 micron thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artifacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial neural network training using the segmentation properties (size, optical density, gyration, etc.) to distinguish between neuron and non-neuron segmentations. ANRA positively identifies 86[5]% neurons with 15[8]% error (mean[st.dev.]) on a wide range of Nissl-stained images, whereas semi-automatic methods obtain 80[7]%/17[12]%. A further advantage of ANRA is that it affords an unlimited increase in speed from semi-automatic methods, and is computationally efficient, with the ability to recognize ~100 neurons per minute using a standard personal computer. ANRA is amenable to analysis of huge photo-montages of Nissl-stained tissue, thereby opening the door to fast, efficient and quantitative analysis of vast stores of archival material that exist in laboratories and research collections around the world.Comment: 38 pages. Formatted for two-sided printing. Supplemental material and software available at http://physics.bu.edu/~ainglis/ANRA

    Video Guidance Sensor and Time-of-Flight Rangefinder

    Get PDF
    A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode
    corecore