6,862 research outputs found
Late quaternary time series of Arabian Sea productivity: Global and regional signals
Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from upwelling induced by strong southwest winds during June, July, and August. Indian Ocean summer monsoon winds are, in turn, driven by differential heating between the Asian continent and the Indian ocean to the south. This differential heating produces a strong pressure gradient resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian Peninsula. Over geologic time scales (10(exp 4) to 10(exp 6) years), monsoon wind strength is sensitive to changes in boundary conditions which influence this pressure gradient. Important boundary conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea surface temperature, and the elevation and albedo of the Asian continent. To the extent that these factors influence monsoon wind strength, they also influence upwelling and productivity. In addition, however, productivity associated with upwelling can be decoupled from the strength of the summer monsoon winds via ocean mechanisms which serve to inhibit or enhance the nutrient supply in the intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea. To differentiate productivity associated with wind-induced upwelling from that associated with other components of the system such as nutrient sequestering in glacial-age deep waters, we employ a strategy which monitors independent components of the oceanic and atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we monitor the strength of upwelling and productivity using two independent indicators, percent G. bulloides and opal accumulation. We monitor the strength of southwest monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea from the surrounding deserts of the Somali and Arabian Peninsulas. Our current hypothesis is that the variability associated with the 41 kyr power in the G. bulloides and opal accumulation records derive from nutrient availability in the intermediate waters which are upwelled via monsoon winds. This hypothesis is testable by comparison with Cd records of intermediate and deep waters of the Atlantic and Indian Ocean
Enhanced Spontaneous Emission Into The Mode Of A Cavity QED System
We study the light generated by spontaneous emission into a mode of a cavity
QED system under weak excitation of the orthogonally polarized mode. Operating
in the intermediate regime of cavity QED with comparable coherent and
decoherent coupling constants, we find an enhancement of the emission into the
undriven cavity mode by more than a factor of 18.5 over that expected by the
solid angle subtended by the mode. A model that incorporates three atomic
levels and two polarization modes quantitatively explains the observations.Comment: 9 pages, 2 figures, to appear in May 2007 Optics Letter
Effective Elastic Moduli in Solids with High Crack Density
We investigate the weakening of elastic materials through randomly
distributed circles and cracks numerically and compare the results to
predictions from homogenization theories. We find a good agreement for the case
of randomly oriented cracks of equal length in an isotropic plane-strain medium
for lower crack densities; for higher densities the material is weaker than
predicted due to precursors of percolation. For a parallel alignment of cracks,
where percolation does not occur, we analytically predict a power law decay of
the effective elastic constants for high crack densities, and confirm this
result numerically.Comment: 8 page
The efficacy of halofantrine in the treatment of acute malaria in nonimmune travelers
A multicenter prospective trial was performed to investigate the efficacy and the tolerability of halofantrine in nonimmune patients with malaria imported from areas with drug-resistant falciparum parasites (mainly Africa). Forty-five of the 74 subjects were treated with a one-day regimen (3 x 500 mg) of halofantrine, and the other 29 received the same regimen with an additional treatment on day 7. In the second group, a 100% efficacy rate was demonstrated, but in the group receiving the one-day regimen, four recrudescences were observed in patients with falciparum malaria. Only five mild adverse reactions were seen, which disappeared spontaneously after the end of the treatment. We conclude that halofantrine is highly effective in curing malaria in nonimmune subjects. The treatment scheme for such persons should include an additional treatment on day 7 for nonimmune individuals. This drug was well tolerated in our patients, indicating that halofantrine will be useful in the treatment of multidrug-resistant malaria in nonimmune persons
Considering Deflection Missions for Asteroid Impact Risk
No abstract availabl
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline
array of 150 copies of a simple, fiber-fed integral field spectrograph that
will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first
optical astronomical instrument to be replicated on an industrial scale, and
represents a relatively inexpensive solution for carrying out large-area
spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each
spectrograph contains a volume phase holographic (VPH) grating with a 138 mm
diameter clear aperture as its dispersing element. The instrument utilizes the
grating in first-order for 350-550 nm. Including witness samples, a suite of
170 VPH gratings has been mass produced for VIRUS. Here, we present the design
of the VIRUS VPH gratings and a discussion of their mass production. We
additionally present the design and functionality of a custom apparatus that
has been used to rapidly test the first-order diffraction efficiency of the
gratings for various discrete wavelengths within the VIRUS spectral range. This
device has been used to perform both in-situ tests to monitor the effects of
adjustments to the production prescription as well as to carry out the final
acceptance tests of the gratings' diffraction efficiency. Finally, we present
the as-built performance results for the entire suite of VPH gratings.Comment: 16 pages, 11 figures, 2 tables. To be published in Proc. SPIE, 2014,
"Advances in Optical and Mechanical Technologies for Telescopes and
Instrumentation", 9151-53. The work presented in this article follows from
arXiv:1207:448
Evolutionary calculations of phase separation in crystallizing white dwarf stars
We present an exploration of the significance of Carbon/Oxygen phase
separation in white dwarf stars in the context of self-consistent evolutionary
calculations. Because phase separation can potentially increase the calculated
ages of the oldest white dwarfs, it can affect the age of the Galactic disk as
derived from the downturn in the white dwarf luminosity function. We find that
the largest possible increase in ages due to phase separation is 1.5 Gyr, with
a most likely value of approximately 0.6 Gyr, depending on the parameters of
our white dwarf models.
The most important factors influencing the size of this delay are the total
stellar mass, the initial composition profile, and the phase diagram assumed
for crystallization. We find a maximum age delay in models with masses of 0.6
solar masses, which is near the peak in the observed white dwarf mass
distribution. We find that varying the opacities (via the metallicity) has
little effect on the calculated age delays.
In the context of Galactic evolution, age estimates for the oldest Galactic
globular clusters range from 11.5 to 16 Gyr, and depend on a variety of
parameters. In addition, a 4 to 6 Gyr delay is expected between the formation
of the globular clusters and that of the Galactic thin disk, while the observed
white dwarf luminosity function gives an age estimate for the thin disk of 9.5
+/-1.0 Gyr, without including the effect of phase separation. Using the above
numbers, we see that phase separation could add between 0 to 3 Gyr to the white
dwarf ages and still be consistent with the overall picture of Galaxy
formation. Our calculated maximum value of 1.5 Gyr fits within these bounds, as
does our best guess value of 0.6 Gyr.Comment: 13 total pages, 8 figures, 3 tables, accepted for publication in the
Astrophysical Journal on May 25, 199
- …