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We investigate the weakening of elastic materials through randomly distributed circles and cracks numeri-
cally and compare the results to predictions from homogenization theories. We find a good agreement for the
case of randomly oriented cracks of equal length in an isotropic plane-strain medium for lower crack densities;
for higher densities the material is weaker than predicted due to precursors of percolation. For a parallel
alignment of cracks, where percolation does not occur, we analytically predict a power-law decay of the
effective elastic constants for high crack densities, and confirm this result numerically.
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I. INTRODUCTION

The appearance of cracks is an effective mechanism for a
mechanical system under load to release elastic energy and
to relax toward equilibrium. It is therefore not surprising that
aging processes in a broad class of materials can lead to the
emergence of microcracks that weaken a specimen. They do
not necessarily lead to complete failure but their presence
alters the elastic properties of the system. For many practical
applications it is therefore highly desirable to develop simple
but still precise predictions for the resulting elastic properties
of a medium that contains defects, cracks, or other inhomo-
geneities. Cracked material is just one case in the widely
dealt with topic of physical properties of heterogeneous
media.1–4 The different physical properties to be described
encompass conductive, transport, and also elastic
quantities.5–7 Often, one starts from a coarse-grained picture
and aims to find an effective description for the heteroge-
neous mixture. Much effort has been put into the calculation
of effective elastic properties of composed media where the
constituents have different elastic coefficients.8–10

It turns out that the elastic properties of the system depend
strongly on the positional and orientational distribution of
the inclusions. Even different loading paths can lead to a
different elastic response of the material under
investigation.12 Therefore, special attention has to be paid to
the underlying assumptions of the cavity distribution. It has
been shown that the Hashin-Shtrikman-type bounds obtained
for the bulk modulus of two-phase materials set important
restrictions in terms of phase moduli and volume
fractions,7,10 and improvement to these bounds have to in-
volve considerations of statistical details of phase
distributions.

The starting point for various effective-medium theories is
the effect of a single impurity or crack inside an otherwise
homogeneous medium. Also in the following work we will
implicitly employ the results of Eshelby5 concerning the
elastic fields around and inside a single ellipsoidal inhomo-
geneity in an infinitely extended, linearly elastic homoge-
neous solid. In fact, this “dilute” limit for a single imperfec-
tion already gives an expression for the effective elastic
constants for vanishingly low defect concentration. Higher

concentrations of inhomogeneities can be treated in the
framework of self-consistent or differential effective-medium
theories. Generally speaking, these approaches make use of
the idea, that a medium which already contains inclusions of
another “phase” can be approximated as a homogeneous ma-
terial with different material properties, to which then, step
by step, additional inhomogeneities are added to reach a fi-
nite concentration of them. The underlying assumption, that
all effective properties depend only on the material constants
of the pure phases and their volume fractions, is of course
only an approximation, and the quality of the theoretical pre-
dictions can hardly be controlled. A careful comparison to
either experiments or numerical calculations of the effective
properties is therefore highly recommended to judge the
quality of the different homogenization methods.

The purpose of the present paper is manifold: first, it is
intended as a numerical check for the analytical estimates for
the effective elastic constants. Obviously, all schemes men-
tioned above are approximative in nature, and it is one goal
of this paper to shed light on the range of applicability of the
theoretical models. We use both finite-difference and finite-
element methods for the numerical investigations, and the
comparison to earlier results serves as benchmark for these
approaches. This will be done for the important case of
spherical inclusions since rigorous theoretical statements can
be used to test the numerical methods. This methodological
confirmation is essential for the following tests of homogeni-
zation theories concerning the weakening of materials
through cracks, which is the second main subject of this
work. As will be pointed out, the effect of percolation, i.e.,
the long-range connection of cracks traversing the whole
sample, plays an important role here, and therefore devia-
tions from differential homogenization theories, which pre-
dict an exponential weakening of the material with increas-
ing crack density, are noticeable already for moderate crack
densities. In this context, the only situation where percola-
tion does not play a role is that of parallel cracks. The third
important subject of this paper is the prediction of effective
elastic constants in such a geometry, which surprisingly turn
out to decay here according to a power-law behavior as func-
tion of the crack density, in contrast to exponential decays
that could be expected from related situations.9 It must be
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pointed out that this fully analytical prediction becomes ac-
curate in the limit of high crack densities and is therefore
complementary to conventional theories. The predictions are
confirmed by the same numerical methods that have been
justified before.

II. MODEL VERIFICATION: RANDOM DISTRIBUTION
OF SPHERICAL HOLES

The first system under investigation is that of a two-
dimensional �2D� isotropic solid in a plane-strain situation
that contains randomly placed circular holes which are al-
lowed to overlap. This system has already been investigated
numerically by Day et al.11 We use this scenario to demon-
strate the applicability of our numerical method to determine
the effective elastic constants.

For N spherical holes of radius r in the solid phase with
area A, the true void concentration c is related to the void
area ratio c̃=N�r2 /A according to the relation

c = 1 − exp�− c̃� , �1�

which takes into account that the circles can overlap.
Starting from the exact expression for a single inclusion,5

low-density expressions for the effective elastic constants
can be derived in terms of the two-dimensional elastic
moduli,

Elow
�2D� = E�2D� − 3E�2D�c + O�c2� , �2�

�low
�2D� = ��2D� + �1 − 3��2D��c + O�c2� �3�

with Young’s modulus E�2D� and the Poisson ratio ��2D� of the
solid phase; this result is attributed to numerous authors.12,13

We use here the explicit annotation 2D to emphasize that the
elastic constants are those of a two-dimensional plane-strain
material since some peculiarities in the behavior of the ef-
fective constants are purely attributed to the dimensionality
of representation, as will be elucidated below. The expres-
sions for conversion between 2D and three dimensions �3D�
are given in Appendix A.

The truncation of the above series after the linear term
already provides a low-density prediction for the effective
elastic constants. Within this effective-medium theory,
Young’s modulus E vanishes for c=1 /3; however, the true
percolation point is14,15 cp�0.68 and only then E should
become strictly zero. This deviation already shows that the
effective-medium theory loses its predictive power for higher
concentrations, underestimating the true stiffness of the
material.

Using the above low-density expressions �2� and �3�, we
can also derive another approximative model for the elastic
constants in the framework of the differential medium theory
�see also Appendix B�. According to Eq. �B3�, we start from

dEef f
�2D�

dc
=

− 3Eef f
�2D�

1 − c
, �4�

d�ef f
�2D�

dc
=

1 − 3�ef f
�2D�

1 − c
�5�

and obtain as solution

Eef f
�2D��c� = E�2D��1 − c�3, �6�

�ef f
�2D� =

1

3
− �1

3
− ��2D���1 − c�3. �7�

Apparently, this model predicts “percolation” for c=1, i.e., if
the solid phase disappears completely. It is obvious that this
model therefore must be invalid for high cavity concentra-
tions as well, overestimating the elastic constants of the het-
erogeneous system.

We note that in both approximative theories the effective
Young’s modulus does not depend on the Poisson ratio, a
behavior that is known to hold exactly.16

We use a straightforward finite-difference method to solve
the problem numerically. In a discretized rectangular system
in the yz plane an “order parameter” � is set to zero at the
grid points which are covered by the circles of equal diam-
eter, and �=1 in the remaining solid. Then the local elastic
modulus is set to E�2D����=�E�2D� and the elastic equilib-
rium conditions ��ij /�xj =0 are solved by relaxation. The
system is strained and the average stress calculated, from
which the effective elastic constants can be deduced as fol-
lows: for a system that is strained in z direction and has
periodic boundary conditions in y direction, the average
strain ��yy� vanishes. The average diagonal stress compo-
nents in the system ��yy� and ��zz� are measured for this
plane-strain scenario with �xx=0. Then the effective elastic
constants are determined through

Eef f
�3D� =

�2��yy� + ��zz�����zz� − ��yy��
���yy� + ��zz����zz�

, �8�

�ef f
�3D� =

��yy�
��yy� + ��zz�

, �9�

where the average strain ��zz� is fixed through the boundary
conditions. We typically used systems sizes of 2048�1024
grid points, with up to 1000 circles with a radius of 20 grid
points. Further details on the elastic solver are presented in
Refs. 17 and 18.

The dependence of the effective elastic modulus on the
concentration as predicted by the theories, see Eqs. �2� and
�6�, and as obtained by numerical simulations is shown in
Fig. 1. The independence of Eef f on the Poisson ratio is
clearly visible also in the numerics, where we checked this
explicitly for ��2D�=1 /2 and ��2D�=−0.41 �corresponding to
��3D�=1 /3 and ��3D�=−0.7, respectively�; the latter case of an
auxetic material is sometimes observed, e.g., in foams19 and
is here only used as an extreme case to confirm the indepen-
dence on the Poisson ratio. In fact, we find that for the same
random arrangement of circular holes the elastic constants
match. Since we wanted to obtain a reasonable statistical
averaging, we also performed repeated runs with different
initializations. As we increase the void concentration c, one
can clearly see that the scattering of the data points increases
for higher concentrations since larger clusters can form
which can become comparable to the �finite� system size
used in the simulations. Also, the relaxation time increases
strongly with c, thus results for higher concentrations are not
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shown here. In Ref. 11, Day et al. performed simulations
based on an elastic spring network formulation for system
setups analogous to ours. The comparison of our numerical
results to the simulation data of Day et al. are also included
in Fig. 1. The results for the independent numerical ap-
proaches are in reasonable agreement. In particular, all sets
correctly reproduce the exactly known low-density limit c
→0. For higher concentrations, we obtain a higher effective
elastic modulus than Day et al., and we believe that this is a
consequence of the considerably larger systems that we used.

Similarly, the effective Poisson ratio agrees well with the
differential theory, as can be seen in Fig. 2, especially in the
case of a negative Poisson ratio. Even at the highest densities
that were simulated here, we do not observe a noticeable
deviation from this homogenization model.

Finally, we briefly remark that the results depend on the
dimension of representation. Conversion of the results for the
differential homogenization theory gives according to Eq.
�A2�,

Eef f
�3D� = �3E�3D��c − 1�3	c�8��3D� − 2��c2 − 3c + 3�

− 3�1 + ��3D��
�/�	c�4��3D� − 1�

��c2 − 3c + 3� − 3
2���3D� + 1�� , �10�

�ef f
�3D� =

c�4��3D� − 1��c2 − 3c + 3� − 3��3D�

c�4��3D� − 1��c2 − 3c + 3� − 3
. �11�

In particular, the effective three-dimensional elastic modulus
does not have the property of being independent of the Pois-
son ratio. Furthermore, for negative Poisson ratios the effec-
tive elastic modulus can first increase if the material is
“weakened” by spherical holes. A similar behavior was re-
ported for cracks in Ref. 9, and here we see that this effect is
rather generic and results mainly from the definition of the
elastic constants. Indeed, this counterintuitive behavior is ob-
viously an artifact of the three-dimensional representation
that is already contained in the low-density expressions and
not related to a specific homogenization scheme. Already for
low concentrations we get

Eef f
�3D� = E�3D��1 −

�1 − ��3D���8��3D� + 3�
1 + ��3D� c + O�c2� ,

�12�

which can start with a positive slope for negative Poisson
ratios.

III. RANDOM DISTRIBUTION OF CRACKS

In this section we investigate a random arrangement of
cracks in a solid and compare the prediction for the effective
elastic constants to numerical simulations. To that end, we
use the same geometry as in Ref. 9, where the normal vectors
of the planar cracks are located in the yz plane and they are
infinitely extended in x direction. Therefore, the system be-
comes again effectively two dimensional and we restrict our
investigations to a plane-strain scenario. In the yz plane, all
cracks have the same length L; here we assume that the
orientation is random and all angles 	 appear with the same
probability; in the notation of Ref. 9 this means for the ori-
entational order parameter P= �sin2 	�=1 /2.

We introduce a crack density parameter as


 =
��L/2�2N

A
, �13�

where N is the number of cracks per area A in the yz plane.
The prediction for the effective �three-dimensional� elastic
constants in the framework of the differential homogeniza-
tion method is for plane strain according to Ref. 9,

Eef f
�3D� =

E�3D�	2��3D� + �1 − ��3D��e


	��3D� + �1 − ��3D��e

2�1 + ��3D��

, �14�

�ef f
�3D� =

��3D�

��3D� + �1 − ��3D��e
 , �15�

which predicts an exponential weakening of the material
with the density parameter 
. In particular, the effective me-
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FIG. 1. Effective elastic modulus as a function of the void con-
centration c. The plot shows numerical data for different Poisson
ratios, as obtained with the present method, in comparison to nu-
merical results obtained by Day et al. Here we used different dis-
tributions of cracks and evaluated the effective elastic modulus for
the two different Poisson ratios using exactly the same arrangement
of cracks; the independence of the Poisson ratio is clearly visible.
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FIG. 2. Poisson ratio as a function of the void concentration c.
For �=1 /3, both, the effective-medium theory and the differential
theory show fairly good agreement with the numerical results. The
predictions from the effective-medium theory are shown only up to
the percolation point c=1 /3. For negative Poisson ratios, the differ-
ential theory coincides much better with the simulations.
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dium is still isotropic since there is no preferred orientation
for the cracks and therefore the elastic properties are still
fully described by two elastic constants.

Interestingly, the two-dimensional representation of the
above result gives simply

Eef f
�2D� = E�2D� exp�− 
�, �ef f

�2D� = ��2D� exp�− 
� �16�

so both constants decay according to a simple exponential
decay to zero. Notice, in particular, that the effective two-
dimensional Poisson ratio also tends to zero, in contrast to
the spherical case discussed before, where it approaches 1/3.
We also mention that here the effective elastic modulus does
not depend on the bare Poisson ratio ��2D�. Notice that the
above conversion implies also that the effect of an increase
in stiffness with the crack density for negative Poisson ratios,
that was discussed in Ref. 9, is indeed an artifact of the
three-dimensional representation, similar to the spherical ex-
ample discussed above.

We note that the limit Eef f =0 is only reached for 
→�,
which means that this theory does not predict percolation.
However, in reality percolation occurs for20 
�4.49 and
then a network of cracks penetrates the whole system, thus
the true effective modulus vanishes. Therefore the differen-
tial homogenization method overestimates the true elastic
modulus for higher crack densities.

To check the quality of the above analytical predictions,
we investigated the case of randomly oriented cracks also
numerically for plane strain using finite-difference relaxation
methods similar to the case of circular holes studied above.
Here, we set the Young’s modulus to zero in a thin rectangle
with a typical height of four lattice units; this avoids undes-
ired “connections” between the two surfaces of a crack that
is tilted with respect to the Cartesian mesh. Since the cracks
therefore have a finite volume instead of being only cuts in
the plane, we checked that the results are insensitive with
respect to changes in the grid spacing; notice that a smaller
lattice unit reduces also the volume inside the cracks. We
checked that variation in the accumulated volume fraction of
the “vacuum phase” inside the cracks relative to the system
size even in the range up to 5–12 % for the highest crack
densities used for the present simulations does not influence
the results. Also, we note that the stress singularity is of
course altered for cracks with a nonsharp tip and a finer grid
spacing is able to resolve the elastic fields with higher pre-
cision; we chose a sufficient resolution to obtain robust re-
sults. In fact, the average stresses do not sensitively depend
on the width of the cracks since the integral

��� � �
R0

R1

��r�rdr

is well convergent at the lower cutoff r=R0 �proportional to
the crack height� for ��r−1/2 �the upper cutoff R1 of the
singular behavior is determined by the distance to the neigh-
boring cracks and therefore depends on the interactions be-
tween the cracks�.

For low crack densities, the numerical results shown in
Figs. 3 and 4 agree with the prediction Eq. �14� but for

higher values they are indeed systematically lower due to
prospective percolation.

Nevertheless, the analytical prediction from Ref. 9 can be
considered as a very good approximation at least for crack
densities 
�1.

We also see good agreement for the Poisson ratio in this
range of 
, see Fig. 5. For a negative bare Poisson ratio, here
��3D�=−0.7, the numerical results seem to indicate that it
approaches even a positive value instead of just decaying to
zero.

IV. ASYMPTOTIC BEHAVIOR OF PARALLEL CRACKS

From a more general point of view, all setups with ran-
dom crack orientations have a finite percolation threshold,
even if the probability distribution for the choice of the angle
is not uniform. The only exception is the case that all cracks
are parallel; then percolation does not occur. Thus only here
a nontrivial asymptotic behavior exists for high crack densi-
ties. It turns out that for this special case analytical predic-
tions for the effective elastic constants can be made, which
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become accurate in the limit 
→�, and in this respect they
differ fundamentally from conventional homogenization
theories.

First, it should be noted that in this case the material that
is pierced by cracks becomes anisotropic and we therefore
characterize its elastic properties by the tensor cijkl

ef f , with
�ij =cijkl�kl. If we assume that in the yz plane all cracks are
aligned in y direction �see Fig. 6�, it is immediately clear
that, e.g., cyyyy

ef f =cyyyy since a pure stretching in y direction
does not open the cracks; hence the strain tensor is homoge-
neous in the material and unaffected by the cracks.

For low crack densities, the effective elastic constants
were calculated in Ref. 9 and, in particular, we get

c3333
low = �1 − ��3D��	1 + 2
P
D−1E�3D� �17�

with

D = 	4
2P�1 − P��1 − ��3D��2 + 2�1 − ��3D��2
 + 1 − 2��3D�


��1 + ��3D�� ,

where the orientational order parameter P of the crack dis-

tribution, as introduced in Ref. 9, is P=0 for the parallel
arrangement.

We start with looking at high crack densities, 
→�; two
different length scales are important for a complete descrip-
tion of the problem at hand, the length L of the cracks and
the average vertical distance h between them. For high crack
densities 
, the vertical distance h between neighboring
cracks is smaller than the average crack length L, and the
relation between the two characteristic length scales can be
given through 
 only so we obtain h�L /
. If the cracked
body is subjected to tensile loading perpendicular to the
cracks, the solid regions between two cracks can be under-
stood as a thin bent plate of a width proportional to L and
thickness h. This interpretation automatically takes into ac-
count the strong interaction between adjacent cracks; the sin-
gular contributions from the crack tips give only a negligible
contribution to the average stresses since it is cut-off on the
scale h. The opening of the cracks is the displacement uz.
The stress of a thin bent plate scales as21,22

�zz �
Eh3

1 − �2

�4uz

�y4 . �18�

With this equation, it follows readily that the average stress
and the opening uz have to scale like

�uz� � ��zz�
�1 − �2�L4

Eh3 . �19�

The total displacement is distributed among the opening of
all cracks, which relax the material around them. Since for
this loading all other average strain components are small,21

the average strain ��zz� is simply given by

��zz� =
�uz�
h

. �20�

Plugging this into Eq. �19�, we finally obtain for the case

1,

��zz� � ��zz�
E

�1 − �2�
4 . �21�

In other words, the relevant elastic constant

c3333
ef f =

��zz�
��zz�

�22�

decays by a power law,

c3333
ef f � c3333


−4. �23�

We note that this scaling behavior holds also for situations
where the cracks can have unequal lengths, distributed
around the mean value L; details of the distribution function
can affect only the numerical prefactor of the above predic-
tion in the limit 
→�. In addition, we also performed simu-
lations for regular arrays of cracks. Also, we checked nu-
merically that the scaling behavior holds for random parallel
arrangements of cracks; the results can be seen in Fig. 7.
This graph shows the results for the low-density theory, the
asymptotic behavior, and numerical simulation data from
both finite-difference and finite-element methods.23 We used
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FIG. 6. Random arrangement of parallel cracks. The average
crack length is L and the average vertical distance between neigh-
boring cracks is h.
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different arrangements of cracks to illustrate the scaling be-
havior. First, we took a regular arrangement of cracks, where
we can rigorously calculate the effective elastic constants for

→�; this is shown in Appendix C. Due to the spatial pe-
riodicity it is sufficient to consider a system with only a few
cracks. We clearly see that both finite-difference and finite-
element calculations give the same results which agree with
the analytical predictions of Appendix C and therefore con-
firm the methods; again, we checked that the results are in-
sensitive to a change in the discretization and the width of
the rectangular cracks, thus effects due to the finite width of
the cracks are eliminated. The finite-element method is com-
putationally more efficient than the simple relaxation solver;
however, the geometrical description is easier with finite dif-
ferences since, e.g., intersections with boundaries �or over-
laps of cracks for the random orientation case, as discussed
in the preceding section� do not require a separate treatment.
To get clear predictions for the scaling behavior as function
of the crack density 
, we randomly place the cracks in the
system and solve the elastic problem by finite-element meth-
ods. Then we change the value of 
 by rescaling the height
of the system, which means that the arrangement of cracks is
the same for all points on one curve. The correct scaling
behavior is demonstrated here for a relatively small system
with only N=20 cracks. Obviously, the specific results de-
pend then on the configuration, and only for N→� these
discrepancies between different arrangements would disap-
pear. However, the results show that the scaling holds for
each configuration �shown here for two cases� and therefore
it must be correct also for the true ensemble average in an
infinitely large system.

The results, in particular, the finite-difference data for
small 
 show the crossover between the low-density predic-
tion 	Eq. �17�
 and the asymptotic behavior 	Eq. �23�
. For
the latter, the numerical prefactor was chosen such that it
matches the particular case of regular cracks �g=1 /2�, as
explained in Appendix C.

V. SUMMARY AND CONCLUSION

We investigated numerically the effective elastic constants
for isotropic plane-strain media with spherical holes, ran-

domly oriented and parallel cracks. In all cases we find a
good agreement with predictions from different homogeniza-
tion theories, with a better performance of differential media
theories. The results show clear deviations from the approxi-
mative theories, which are strictly valid only for low inclu-
sion densities since they do not correctly account for effects
which go beyond mean-field approximations. In particular,
all discussed models do not correctly take into account per-
colation, which should lead to a sharp drop of the effective
elastic modulus. The only case where percolation does not
occur is that of parallel cracks. By scaling arguments we
derived analytically the scaling behavior of effective elastic
constants in the limit 
→� and obtain a power-law decay
with the crack density. This new prediction was confirmed
numerically using finite-difference and finite-element meth-
ods. We note that this prediction is complementary to con-
ventional homogenization theories, as it becomes accurate
for increasing crack densities. Even though the effective
elastic constants are already low in this regime, the obtained
results are therefore of principal interest and raise the ques-
tion whether explicit solutions for other situations with high
inclusion density are also possible.
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APPENDIX A: CONVERSION BETWEEN TWO- AND
THREE-DIMENSIONAL REPRESENTATION

As already mentioned above, the dimensionality can play
a role for the effective elastic constants. We can convert the
elastic constants of a two-dimensional setup to an equivalent
three-dimensional plane-strain situation. The defining equa-
tion is Hooke’s law,

�ij =
1

E
	�1 + ���ij − ��ij�kk
 �A1�

which holds for both 3D and 2D; the difference is that in the
first case all indices run over x ,y ,z and in the second only
over y ,z. In a plane-strain 3D configuration, �xx=0, we have
�xx=���yy +�zz� whereas this stress component does not ap-
pear in 2D. Hence the conversion rules for the elastic con-
stants are given by

E�3D� = E�2D� 1 + 2��2D�

�1 + ��2D��2 , ��3D� =
��2D�

1 + ��2D� , �A2�

which follows directly from Hooke’s law 	Eq. �A1�
.

APPENDIX B: DIFFERENTIAL HOMOGENIZATION
METHOD

Let a system of dimensionless “volume” V0=1 contain
inclusions of a second phase, characterized by the initial con-
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0.0001
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1

0.1 1 10 100 1000

c 3
33

3ef
f /c

33
33

α

Low density theory
Thin plate theory

Regular array (finite diff.)
Regular array (finite el.)

20 random cracks (finite el.)

FIG. 7. Scaling behavior of the effective elastic constant c3333
ef f as

a function of the crack density 
 for a parallel arrangement of
cracks in logarithmic representation. For a regular arrangement of
cracks, the agreement of the numerical simulations with thin-plate
theory is excellent. If the cracks are placed at random positions,
they still exhibit the same power-law scaling behavior.
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centration �volume fraction� c0, which in turn means that the
concentration of the first phase is 1−c0. Now, a volume dc0
of the second phase to the original volume V0=1 is added,
leading to a total volume of V=1+dc0. The total volume of
phase two has increased to c0+dc0, resulting in a total vol-
ume fraction of

c =
c0 + dc0

1 + dc0
= c0 + �1 − c0�dc0 + O�dc0

2� . �B1�

The change in concentration of the second phase is therefore
dc= �1−c0�dc0. Mef f denotes a complete set of effective elas-
tic constants �or other quantities of interest�. In the frame-
work of the homogenization methods used here, this set
should depend on the properties of the pure phases and the
concentration, Mef f =F�M1 ,M2 ,c� with a universal function
F and the obvious relation

Mef f = F�Mef f,M2,c = 0� . �B2�

In the framework of the differential homogenization method
the increase in the amount of the new phase from c to c
+dc is interpreted as the addition of the amount dc0 to the
already homogenized medium with properties Mef f. Hence
we obtain

Mef f + dMef f = F�M1,M2,c + dc�

= F�Mef f,M2,dc0�

= Mef f + � �F�M1,M2,c�
�c

�
c=0,M1=Mef f�c�

dc

1 − c

since in the second step the change in concentration is
dc0 / �1+dc0�=dc0+O�dc0

2�; in the last step the relation �B2�
was used. Here it is important to note that after the differen-
tiation first c has to be set to zero and only then M1
=Mef f�c� to be inserted. Therefore, we immediately obtain
the fundamental equation

dMef f

dc
=

1

1 − c
� �F�M1,M2,c�

�c
�

c=0,M1=Mef f�c�
. �B3�

For slitlike cracks, the volume fraction is zero and therefore
the prefactor �1−c�−1 disappears and c is replaced by the
density parameter 
.

APPENDIX C: REGULAR ARRAY OF CRACKS

To make the preceding scaling arguments in Sec. IV more
explicit, we discuss here a regular arrangement of cracks, as
depicted in Fig. 8 and solve this problem exactly in the limit

→�. The idea is that the displacement, which is applied to
the sample is mainly stored in the opening of the cracks and
the material in between is only slightly stretched. The region
between adjacent cracks behaves then as a bent plate �see
dark region in Fig. 8�, which is thin in the limit Rh. We
note that for this regular arrangement the plate length R ap-
pears here as additional parameter, which is related to the
gap distance x by L=2R+x; again, L is the crack length
which is now assumed to be exactly the same for all cracks.
Therefore, the additional dimensionless parameter g=x /R re-

mains in the final solution whereas for an irregular arrange-
ment of cracks it would be determined statistically; finally, it
enters only into the numerical prefactor of the effective elas-
tic constants.

For the given geometry, the area that is occupied by a
single crack, N=1, is A= �L+x�h. Therefore, the crack den-
sity is


 =
�

2

�1 + g/2�2

1 + g

R

h
. �C1�

The bending of the thin plate is described by the equation
z��y�=0 since the upper and lower surfaces are stress free.21

Each plate is displaced by z�R�= ��zz�h since the total dis-
placement is equally distributed among all crack openings.
Together with the symmetry conditions z��0�=z��R�=0 and
the reference value z�0�=0, we obtain for the coefficients of
the general solution z�y�=ay3+by2+cy+d the values b
=3��zz�h /R2 and a=−2b /3R. The force per unit length in x
direction that is required to bend the plate by the given
amount is given by21

F = −
Eh3

12�1 − �2�
z� =

Eh4��zz�
�1 − �2�R3 �C2�

and thus the average stress in vertical direction,

��zz� =
F

x + R
=

E��zz�
1 − �2��

2
�4 �1 + g/2�8

�1 + g�5 
−4. �C3�

From Hooke’s law for the effective medium, ��zz�
=c3333

ef f ��zz�+¯ follows

(a)

(b)

FIG. 8. Top: Sketch of the regular array of cracks that is used
both for analytical calculations and numerics. The dashed rectangle
is the “periodic unit cell” in which the elastic problem is solved
numerically. The dark box visualizes the plate that is bent under the
applied load, which is shown in the lower panel. The deformation of
the neutral fiber is denoted by z�y�.
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c3333
ef f =

E

1 − �2��

2
�4 �1 + g/2�8

�1 + g�5 
−4. �C4�

The bare elastic constant c3333 is related to the isotropic
moduli by

c3333 =
E�1 − ��

�1 + ���1 − 2��
�C5�

and hence get asymptotically for 
→�,

c3333
ef f

c3333
=

1 − 2�

�1 − ��2��

2
�4 �1 + g/2�8

�1 + g�5 
−4. �C6�
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