39,799 research outputs found

    Micromagnetic Simulations of Ferromagnetic Rings

    Full text link
    Thin nanomagnetic rings have generated interest for fundamental studies of magnetization reversal and also for their potential in various applications, particularly as magnetic memories. They are a rare example of a geometry in which an analytical solution for the rate of thermally induced magnetic reversal has been determined, in an approximation whose errors can be estimated and bounded. In this work, numerical simulations of soft ferromagnetic rings are used to explore aspects of the analytical solution. The evolution of the energy near the transition states confirms that, consistent with analytical predictions, thermally induced magnetization reversal can have one of two intermediate states: either constant or soliton-like saddle configurations, depending on ring size and externally applied magnetic field. The results confirm analytical predictions of a transition in thermally activated reversal behavior as magnetic field is varied at constant ring size. Simulations also show that the analytic one dimensional model continues to hold even for wide rings

    Coupled-resonator-induced transparency with a squeezed vacuum

    Full text link
    We present the first experimental observation of quantum fluctuation spectra in two coupled optical cavities with an injected squeezed vacuum light. The quadrature components of the reflected squeezed vacuum spectra are measured by phase sensitive homodyne detector. The experimental results demonstrate coupled-resonator-induced transparency in the quantum regime, in which electromagnetically-induced-transparency-like characteristic of the absorption and dispersion properties of the coupled optical cavities determines the line-shape of the reflected quantum noise spectra.Comment: 4 pages, 4 figures, appear in Phys. Rev. Let

    Bioconversion of rape straw into a nutritionally enriched substrate by Ganoderma lucidum and yeast

    Get PDF
    This work aims to select biological treatments and conditions for the bioconversion of rape straw by the mixed-strain fermentation of Ganoderma lucidum and yeasts (Saccharomyces cerevisiae, Candida tropicalis and Candida utilis), into an enriched substrate with increased crude protein and digestibility. Orthogonal experiment showed that the optimal experimental condition for the crude protein enrichment was: 10% (v/w) C. utilis inoculum was added to the rape straw medium after 7 days of G. lucidum growth; the crude protein content of the substrate was 16.23%; the yield rate were increased by 75.70 and 225.90%, respectively when compared to the G. lucidum individual-fermentation and without fermentation substrate. The results in this study also indicated that: the co-culture of 2 fungi (G. lucidum + C. utilis) was better than individual (G. lucidum) culture on the degradation of cellulose and lignin of rape straw substrate and the secretion of ligninolytic enzyme system including laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP).Key words: Bioconversion, rape straw, nutritionally enrichment, Ganoderma lucidum, yeast

    Scaling in directed dynamical small-world networks with random responses

    Full text link
    A dynamical model of small-world network, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of every site to the imput message are introduced to simulate real systems. The interplay of these ingredients results in collective dynamical evolution of a spin-like variable S(t) of the whole network. In the present model, global average spreading length \langel L >_s and average spreading time _s are found to scale as p^-\alpha ln N with different exponents. Meanwhile, S behaves in a duple scaling form for N>>N^*: S ~ f(p^-\beta q^\gamma t'_sc), where p and q are rewiring and external parameters, \alpha, \beta, \gamma and f(t'_sc) are scaling exponents and universal functions, respectively. Possible applications of the model are discussed.Comment: 4 pages, 6 Figure

    Searching for Ground Truth: a stepping stone in automating genre classification

    Get PDF
    This paper examines genre classification of documents and its role in enabling the effective automated management of digital documents by digital libraries and other repositories. We have previously presented genre classification as a valuable step toward achieving automated extraction of descriptive metadata for digital material. Here, we present results from experiments using human labellers, conducted to assist in genre characterisation and the prediction of obstacles which need to be overcome by an automated system, and to contribute to the process of creating a solid testbed corpus for extending automated genre classification and testing metadata extraction tools across genres. We also describe the performance of two classifiers based on image and stylistic modeling features in labelling the data resulting from the agreement of three human labellers across fifteen genre classes.

    Phosphoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice

    Get PDF
    Spiral ganglion neurons (SGNs) relay acoustic code from cochlear hair cells to the brainstem, and their stimulation enables electrical hearing via cochlear implants. Rapid adaptation, a mechanism that preserves temporal precision, and a prominent feature of auditory neurons, is regulated via dendrotoxin-sensitive low-threshold voltage-activated (LVA) K(+) channels. Here, we investigated the molecular physiology of LVA currents in SGNs cultured from mice following the onset of hearing (postnatal days 12-21). Kv1.1- and Kv1.2-specific toxins blocked the LVA currents in a comparable manner, suggesting that both subunits contribute to functional heteromeric channels. Confocal immunofluorescence in fixed cochlear sections localized both Kv1.1 and Kv1.2 subunits to specific neuronal microdomains, including the somatic membrane, juxtaparanodes, and the first heminode, which forms the spike initiation site of the auditory nerve. The spatial distribution of Kv1 immunofluorescence appeared mutually exclusive to that of Kv3.1b subunits, which mediate high-threshold voltage-activated currents. As Kv1.2-containing channels are positively modulated by membrane phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-bisphosphate (PIP2) availability on SGN electrophysiology. Reducing PIP2 production using wortmannin, or sequestration of PIP2 using a palmitoylated peptide (PIP2-PP), slowed adaptation rate in SGN populations. PIP2-PP specifically inhibited the LVA current in SGNs, an effect reduced by intracellular dialysis of a nonhydrolysable analog of PIP2. PIP2-PP also inhibited heterologously expressed Kv1.1/Kv1.2 channels, recapitulating its effect in SGNs. Collectively, the data identify Kv1.1/Kv1.2 heteromeric channels as key regulators of action potential initiation and propagation in the auditory nerve, and suggest that modulation of these channels by endogenous phosphoinositides provides local control of membrane excitability

    Edge Shear Flows and Particle Transport near the Density Limit in the HL-2A Tokamak

    Full text link
    Edge shear flow and its effect on regulating turbulent transport have long been suspected to play an important role in plasmas operating near the Greenwald density limit nG n_G . In this study, equilibrium profiles as well as the turbulent particle flux and Reynolds stress across the separatrix in the HL-2A tokamak are examined as nG n_G is approached in ohmic L-mode discharges. As the normalized line-averaged density nˉe/nG \bar{n}_e/n_G is raised, the shearing rate of the mean poloidal flow ωsh \omega_{\rm sh} drops, and the turbulent drive for the low-frequency zonal flow (the Reynolds power PRe \mathcal{P}_{Re} ) collapses. Correspondingly, the turbulent particle transport increases drastically with increasing collision rates. The geodesic acoustic modes (GAMs) gain more energy from the ambient turbulence at higher densities, but have smaller shearing rate than low-frequency zonal flows. The increased density also introduces decreased adiabaticity which not only enhances the particle transport but is also related to a reduction in the eddy-tilting and the Reynolds power. Both effects may lead to the cooling of edge plasmas and therefore the onset of MHD instabilities that limit the plasma density

    Origin of the spin reorientation transitions in (Fe1x_{1-x}Cox_{x})2_{2}B alloys

    Get PDF
    Low-temperature measurements of the magnetocrystalline anisotropy energy KK in (Fe1x_{1-x}Cox_{x})2_{2}B alloys are reported, and the origin of this anisotropy is elucidated using a first-principles electronic structure analysis. The calculated concentration dependence K(x)K(x) with a maximum near x=0.3x=0.3 and a minimum near x=0.8x=0.8 is in excellent agreement with experiment. This dependence is traced down to spin-orbital selection rules and the filling of electronic bands with increasing electronic concentration. At the optimal Co concentration, KK depends strongly on the tetragonality and doubles under a modest 3% increase of the c/ac/a ratio, suggesting that the magnetocrystalline anisotropy can be further enhanced using epitaxial or chemical strain.Comment: 4 pages + supplementary material, 6 figures. Accepted in Applied Physics Letter

    Free field realization of the exceptional current superalgebra \hat{D(2,1;\a)}_k

    Full text link
    The free-field representations of the D(2,1;\a) current superalgebra and the corresponding energy-momentum tensor are constructed. The related screening currents of the first kind are also presented.Comment: Latex file, 10 page

    Using high-throughput virtual screening to explore the optoelectronic property space of organic dyes; finding diketopyrrolopyrrole dyes for dye-sensitized water splitting and solar cells

    Get PDF
    Organic dyes based on conjugated chromophores such as diketopyrrolopyrrole (DPP) have a large range of uses beyond providing colour to other materials, such as in dye-sensitized solar cells, dye-sensitized photoelectrochemical cells, dye-sensitized colloidal photocatalysts and organic photovoltaics. We perform a high-throughput virtual screening using the xTB family of density functional tight-binding methods to map the optoelectronic property space of ∼45 000 DPP dyes. The large volume of data at our disposal allows us to probe the difference between symmetric and asymmetric dyes and to identify the apparent boundaries of the optoelectronic property space for these dyes, as well as which substituents give access to particular combinations of properties. Finally, we use our dataset to screen for DPP dyes that can drive the reduction of protons to molecular hydrogen when illuminated as part of dye-sensitized photoelectrochemical cells or dye-sensitized colloidal photocatalysts, or as dyes for TiO2-based dye-sensitized solar cells
    corecore