680 research outputs found

    Riding the ‘O’ Train: Comparing the Effects of Ostracism and Verbal Dispute on Targets and Sources

    Full text link
    In the present study we examined the effects of social ostracism (being excluded and ignored in the presence of others) on those who ostracize (sources) and those who are ostracized (targets). Unlike previous research that compared ostracism to social inclusion, the present study also compared ostracism to verbal dispute (i.e. an argument). A role-play method was used such that participants acted out a five-minute train ride in which two sources ignored or argued with a target sitting between them. In three studies, ostracism was shown to be a unique form of social conflict, with targets of ostracism reporting lower need satisfaction levels than targets of argument, whereas sources of ostracism reported higher need satisfaction levels than did sources of argument

    Softening the Blow of Social Exclusion: The Responsive Theory of Social Exclusion

    Get PDF
    Social exclusion is an interactive process between multiple people, yet previous research has focused almost solely on the negative impacts on targets. What advice is there for people on the other side (i.e., sources) who want to minimize its negative impact and preserve their own reputation? To provide an impetus for research on the interactive nature of exclusion, we propose the Responsive Theory of Social Exclusion. Our theory postulates that targets and sources’ needs are better maintained if sources use clear, explicit verbal communication. We propose that sources have three options: explicit rejection (clearly stating no), ostracism (ignoring), and ambiguous rejection (being unclear). Drawing on psychology, sociology, communications, and business research, we propose that when sources use explicit rejection, targets’ feelings will be less hurt, their needs will be better protected, and sources will experience less backlash and emotional toil than if sources use ambiguous rejection or ostracism. Finally, we propose how the language of rejections may impact both parties

    Why social pain can live on: Different neural mechanisms are associated with reliving social and physical pain

    Get PDF
    Although social and physical pain recruit overlapping neural activity in regions associated with the affective component of pain, the two pains can diverge in their phenomenology. Most notably, feelings of social pain can be re-experienced or relived, even when the painful episode has long passed, whereas feelings of physical pain cannot be easily relived once the painful episode subsides. Here, we observed that reliving social (vs. physical) pain led to greater self-reported re-experienced pain and greater activity in affective pain regions (dorsal anterior cingulate cortex and anterior insula). Moreover, the degree of relived pain correlated positively with affective pain system activity. In contrast, reliving physical (vs. social) pain led to greater activity in the sensory-discriminative pain system (primary and secondary somatosensory cortex and posterior insula), which did not correlate with relived pain. Preferential engagement of these different pain mechanisms may reflect the use of different top-down neurocognitive pathways to elicit the pain. Social pain reliving recruited dorsomedial prefrontal cortex, often associated with mental state processing, which functionally correlated with affective pain system responses. In contrast, physical pain reliving recruited inferior frontal gyrus, known to be involved in body state processing, which functionally correlated with activation in the sensory pain system. These results update the physical-social pain overlap hypothesis: while overlapping mechanisms support live social and physical pain, distinct mechanisms guide internally-generated pain. © 2015 Meyer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms

    Get PDF
    Werner-syndrome fibroblasts have a reduced in vitro life span before entering replicative senescence. Although this has been thought to be causal in the accelerated ageing of this disease, controversy remains as to whether Werner syndrome is showing the acceleration of a normal cellular ageing mechanism or the occurrence of a novel Werner-syndrome-specific process. Here, we analyse the signalling pathways responsible for senescence in Werner-syndrome fibroblasts. Cultured Werner-syndrome (AG05229) fibroblasts senesced after approximately 20 population doublings with most of the cells having a 2N content of DNA. This was associated with hypophosphorylated pRb and high levels of p16(Ink4a) and p21(Waf1). Senescent AG05229 cells re-entered the cell cycle following microinjection of a p53-neutralizing antibody. Similarly, production of the human papilloma virus 16 E6 oncoprotein in presenescent AG05229 cells resulted in senescence being bypassed and extended cellular life span. Werner-syndrome fibroblasts expressing E6 did not proliferate indefinitely but reached a second proliferative lifespan barrier, termed M(int), that could be bypassed by forced production of telomerase in post-M1 E6-producing cells. The conclusions from these studies are that: (1) replicative senescence in Werner-syndrome fibroblasts is a telomere-induced p53-dependent event; and (2) the intermediate lifespan barrier M(int) is also a telomere-induced event, although it appears to be independent of p53. Werner-syndrome fibroblasts resemble normal human fibroblasts for both these proliferative lifespan barriers, with the strong similarity between the signalling pathway linking telomeres to cell-cycle arrest in Werner-syndrome and normal fibroblasts providing further support for the defect in Werner syndrome causing the acceleration of a normal ageing mechanism

    Small molecule targeting of the p38/Mk2 stress signaling pathways to improve cancer treatment

    Get PDF
    Purpose: Although a long-term goal of cancer therapy always has been the development of agents that selectively destroy cancer cells, more recent trends have been to seek secondary agents that sensitize cancer cells to existing treatment regimens. In this regard, the present study explored the possibility of using small molecule inhibitors of p38MAPK/MK2 stress signaling pathways as potential agents to enhance the sensitivity of cancer cells with abrogated G1 checkpoint to the DNA damaging agent etoposide by specifically targeting the DNA damage-induced G2 cell cycle checkpoint. Methods: We have applied CCK8 and FACS-based viability assays and cell cycle analysis to investigate the effect of small molecules SB203580 and MK2.III on the sensitivity of small cell lung cancer cells (SCLC) that lack the G1 checkpoint to the DNA damaging agent Etoposide when used in combination. We have also assessed the effectiveness of combination chemotherapy on tumor xenograft suppression with etoposide and MK2.III in immunosuppressed mice. In addition, additional CCK8 cell viability analysis of the MDA-MB-231 breast cancer cell line, and SW620, and SW480 colorectal cancer cell lines was performed. Results: Results suggest that etoposide produces a profound effect on the cell cycle profile of cells in a manner that is consistent with the degree of cell viability that is seen using the viable cell assay. Results of the co-treatment experiments revealed that the p38/MK2 kinase inhibitors SB203580 and MK2.III both enhanced the DNA-damaging effects of etoposide on NCI-H69 cell viability in vitro. Results revealed that in vivo MK2.III was able to act as a chemosensitizer when used in combination with etoposide making NCI-H69 lung cancer cells sensitive to chemotherapeutic drug by 45% compared to single usage of the drug. We also report that MK2.III sensitizes metastatic cell lines SW-620 and MDA-MB-231 to etoposide but does not increase the sensitivity of non-metastasizing SW-480 colorectal cells to DNA damaging agent in vitro. Conclusion: Findings reported in this study provide evidence that specific inhibitors of MK2 may indeed improve overall cancer therapy; however, their effectiveness depends on cell types

    Expression of Telomerase and Telomere Length Are Unaffected by either Age or Limb Regeneration in Danio rerio

    Get PDF
    BACKGROUND:The zebrafish is an increasingly popular model for studying many aspects of biology. Recently, ztert, the zebrafish homolog of the mammalian telomerase gene has been cloned and sequenced. In contrast to humans, it has been shown that the zebrafish maintains telomerase activity for much of its adult life and has remarkable regenerative capacity. To date, there has been no longitudinal study to assess whether this retention of telomerase activity equates to the retention of chromosome telomere length through adulthood. METHODOLOGY/PRINCIPAL FINDINGS:We have systematically analyzed individual organs of zebrafish with regard to both telomere length and telomerase activity at various time points in its adult life. Heart, gills, kidney, spleen, liver, and intestine were evaluated at 3 months, 6 months, 9 months, and 2 years of age by Southern blot analysis. We found that telomeres do not appreciably shorten throughout the lifespan of the zebrafish in any organ. In addition, there was little difference in telomere lengths between organs. Even when cells were under the highest pressure to divide after fin-clipping experiments, telomere length was unaffected. All aged (2 year old) tissues examined also expressed active amounts of telomerase activity as assessed by TRAP assay. CONCLUSIONS/SIGNIFICANCE:In contrast to several other species including humans, the retention of lifelong telomerase and telomeres, as we have reported here, would be necessary in the zebrafish to maintain its tremendous regenerative capacity. The ongoing study of the zebrafish's ability to maintain telomerase activity may be helpful in unraveling the complexity involved in the maintenance (or lack thereof) of telomeres in other species such the mouse or human
    corecore