125 research outputs found

    ZγZ\gamma production at hadron colliders in NNLO QCD

    Get PDF
    We consider the production of ZγZ\gamma pairs at hadron colliders. We report on the first complete and fully differential computation of radiative corrections at next-to-next-to-leading order in QCD perturbation theory. We present selected numerical results for pp collisions at 7 TeV and compare them to available LHC data. We find that the impact of the NNLO QCD corrections on the fiducial cross section ranges between 4 and 15%, depending on the applied cuts.Comment: Minor changes, version published on PL

    W+W−W^+W^- production at hadron colliders in NNLO QCD

    Get PDF
    Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the fundamental structure of electroweak interactions. We present precise theoretical predictions for on-shell W+W−W^+W^- production that include, for the first time, QCD effects up to next-to-next-to-leading order in perturbation theory. As compared to next-to-leading order, the inclusive W+W−W^+W^- cross section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at the 3% level. The severe contamination of the W+W−W^+W^- cross section due to top-quark resonances is discussed in detail. Comparing different definitions of top-free W+W−W^+W^- production in the four and five flavour number schemes, we demonstrate that top-quark resonances can be separated from the inclusive W+W−W^+W^- cross section without significant loss of theoretical precision.Comment: 7 pages, 3 figure

    Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK

    Full text link
    The associate production of Higgs bosons with W or Z bosons, known as Higgs-strahlung, is an important search channel for Higgs bosons at the hadron colliders Tevatron and LHC for low Higgs-boson masses. We refine a previous calculation of next-to-leading-order electroweak corrections (and recalculate the QCD corrections) upon including the leptonic decay of the W/Z bosons, thereby keeping the fully differential information of the 2-lepton + Higgs final state. The gauge invariance of the W/Z-resonance treatment is ensured by the use of the complex-mass scheme. The electroweak corrections, which are at the level of -(5-10)% for total cross sections, further increase in size with increasing transverse momenta p_T in differential cross sections. For instance, for p_T,H >~ 200GeV, which is the interesting range at the LHC, the electroweak corrections to WH production reach about -14% for M_H = 120GeV. The described corrections are implemented in the HAWK Monte Carlo program, which was initially designed for the vector-boson-fusion channel, and are discussed for various distributions in the production channels pp / p \bar p -> H + l nu_l / l^-l^+ / nu_l \bar nu_l + X.Comment: 22 p

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200

    NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders

    Full text link
    We present details of a calculation of the cross section for hadronic top-antitop production in next-to-leading order (NLO) QCD, including the decays of the top and antitop into bottom quarks and leptons. This calculation is based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production and includes all non-resonant diagrams, interferences, and off-shell effects of the top quarks. Such contributions are formally suppressed by the top-quark width and turn out to be small in the inclusive cross section. However, they can be strongly enhanced in exclusive observables that play an important role in Higgs and new-physics searches. Also non-resonant and off-shell effects due to the finite W-boson width are investigated in detail, but their impact is much smaller than naively expected. We also introduce a matching approach to improve NLO calculations involving intermediate unstable particles. Using a fixed QCD scale leads to perturbative instabilities in the high-energy tails of distributions, but an appropriate dynamical scale stabilises NLO predictions. Numerical results for the total cross section, several distributions, and asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde

    Migraine and restless legs syndrome: is there an association?

    Get PDF
    Occasional clinical reports have suggested a link between migraine and restless legs syndrome. We undertook a systematic review of the evidence, which supports this association, and consider possible shared pathogenic mechanisms and the implications for current clinical practice

    NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects

    Get PDF
    We present the first NLO QCD+EW predictions for Higgs boson production in association with a ℓνℓ or ℓ+ℓ− pair plus zero or one jets at the LHC. Fixed-order NLO QCD+EW calculations are combined with a QCD+QED parton shower using the recently developed resonance-aware method in the POWHEG framework. Moreover, applying the improved MiNLO technique to Hℓνℓ +jet and Hℓ+ℓ− +jet production at NLO QCD+EW, we obtain predictions that are NLO accurate for observables with both zero or one resolved jet. This approach permits also to capture higher-order effects associated with the interplay of EW corrections and QCD radiation. The behavior of EW corrections is studied for various kinematic distributions, relevant for experimental analyses of Higgsstrahlung processes at the 13 TeV LHC. Exact NLO EW corrections are complemented with approximate analytic formulae that account for the leading and next-to-leading Sudakov logarithms in the high-energy regime. In the tails of transverse-momentum distributions, relevant for analyses in the boosted Higgs regime, the Sudakov approximation works well, and NLO EW effects can largely exceed the ten percent level. Our predictions are based on the POWHEG BOX RES+OpenLoops framework in combination with the Pythia 8.1 parton shower
    • …
    corecore