710 research outputs found

    Magnetic field effects on the density of states of orthorhombic superconductors

    Full text link
    The quasiparticle density of states in a two-dimensional d-wave superconductor depends on the orientation of the in-plane external magnetic field H. This is because. in the region of the gap nodes, the Doppler shift due to the circulating supercurrents around a vortex depend on the direction of H. For a tetragonal system the induced pattern is four-fold symmetric and, at zero energy, the density of states exhibits minima along the node directions. But YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes two-fold symmetric with the position of the minima occuring when H is oriented along the Fermi velocity at a node on the Fermi surface. The effect of impurity scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure

    Orthorhombicity mixing of s- and d- gap components in YBa2Cu3O7YBa_2Cu_3O_7 without involving the chains

    Full text link
    Momentum decoupling develops when forward scattering dominates the pairing interaction and implies tendency for decorrelation between the physical behavior in the various regions of the Fermi surface. In this regime it is possible to obtain anisotropic s- or d-wave superconductivity even with isotropic pairing scattering. We show that in the momentum decoupling regime the distortion of the CuO2CuO_2 planes is enough to explain the experimental reports for s- mixing in the dominantly d-wave gap of YBa2Cu3O7YBa_2Cu_3O_7. In the case of spin fluctuations mediated pairing instead, a large part of the condensate must be located in the chains in order to understand the experiments.Comment: LATEX file and 3 Postscript figure

    Fermi-Liquid Interactions in d-Wave Superconductor

    Full text link
    This article develops a quantitative quasiparticle model of the low-temperature properties of d-wave superconductors which incorporates both Fermi-liquid effects and band-structure effects. The Fermi-liquid interaction effects are found to be classifiable into strong and negligible renormalizaton effects, for symmetric and antisymmetric combinations of the energies of k↑k\uparrow and −k↓-k\downarrow quasiparticles, respectively. A particularly important conclusion is that the leading clean-limit temperature-dependent correction to the superfluid density is not renormalized by Fermi-liquid interactions, but is subject to a Fermi velocity (or mass) renormalization effect. This leads to difficulties in accounting for the penetration depth measurements with physically acceptable parameters, and hence reopens the question of the quantitative validity of the quasiparticle picture.Comment: 4 page

    CE15014

    Get PDF
    In the southwest of Ireland and the Celtic Sea (ICES Divisions VIIaS, g & j),herring acoustic surveys have been carried out since 1989. In the Celtic Sea and VIIj, herring acoustic surveys have been carried out since 1989, and this survey is the 21st in the overall acoustic series or the tenth in the modified time series conducted exclusively in October. The geographical confines of the annual 21 day survey have been modified in recent years to include areas to the south of the main winter spawning grounds in an effort to identify the whereabouts of winter spawning fish before the annual inshore spawning migration. Spatial resolution of acoustic transects has been increased over the entire south coast survey area. The acoustic component of the survey has been further complemented since 2004 by detailed hydrographic, marine mammal and seabird surveys

    Electronic structure in underdoped cuprates due to the emergence of a pseudogap

    Full text link
    The phenomenological Green's function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, xx, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains 1+x1+x hole states) to the Luttinger pocket (which contains xx hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.Comment: 11 pages, 9 figure

    Spontaneous Flux and Magnetic Interference Patterns in 0-pi Josephson Junctions

    Full text link
    The spontaneous flux generation and magnetic field modulation of the critical current in a 0-pi Josephson junction are calculated for different ratios of the junction length to the Josephson penetration depth, and different ratios of the 0-junction length to the pi-junction length. These calculations apply to a Pb-YBCO c-axis oriented junction with one YBCO twin boundary, as well as other experimental systems. Measurements of such a junction can provide information on the nature of the c-axis Josephson coupling and the symmetry of the order parameter in YBCO. We find spontaneous flux even for very short symmetric 0-pi junctions, but asymmetric junctions have qualitatively different behavior.Comment: 13 pages, TEX,+ 7 figures, postscrip

    Superconducting gap node spectroscopy using nonlinear electrodynamics

    Full text link
    We present a method to determine the nodal structure of the energy gap of unconventional superconductors such as high TcT_c materials. We show how nonlinear electrodynamics phenomena in the Meissner regime, arising from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero, can be used to perform ``node spectroscopy'', that is, as a sensitive bulk probe to locate the angular position of those lines. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a−ba-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+sd+s and s+ids+id). We consider, as suggested by various experiments, order parameters with predominantly dd-wave character, and describe how to determine the possible presence of other symmetries. The nonlinear magnetic moment displays a distinct behavior if nodes in the gap are absent but regions with small, finite, values of the energy gap exist.Comment: 18 pages, Revtex, 9 postscript figures. Submitted to Phys. Rev

    Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As

    Get PDF
    We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to produce a significantly more homogeneous distribution of the magnetization. This difference in the films is attributed to the redistribution of Mn at interstitial sites during the annealing process. Also, we have seen evidence of significant magnetization depletion at the surface of both as-grown and annealed films.Comment: 5 pages, 3 figure

    Twin boundaries in d-wave superconductors

    Full text link
    Twin boundaries in orthorhombic d-wave superconductors are investigated numerically using the Bogoliubov-deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced s-wave component may break time-reversal symmetry at a low temperature. This temperature, and the magnitude of the complex component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements.Comment: ReVTeX, 4 pages, 4 postscript figure
    • …
    corecore