2,301 research outputs found

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Key signal contributions in photothermal deflection spectroscopy

    Get PDF
    We report on key signal contributions in photothermal deflection spectroscopy (PDS) of semiconductors at photon energies below the bandgap energy and show how to extract the actual absorption properties from the measurement data. To this end, we establish a rigorous computation scheme for the deflection signal including semi-analytic raytracing to analyze the underlying physical effects. The computation takes into account linear and nonlinear absorption processes affecting the refractive index and thus leading to a deflection of the probe beam. We find that beside the linear mirage effect, nonlinear absorption mechanisms make a substantial contribution to the signal for strongly focussed pump beams and sample materials with high two-photon absorption coefficients. For example, the measured quadratic absorption contribution exceeds 5% at a pump beam intensity of about 1.3×105  W/cm2{1.3}\times{10^{5}}\;{W}/{cm^{2}} in Si and at 5×104  W/cm2{5}\times{10^{4}}\;{W}/{cm^{2}} in GaAs. In addition, our method also includes thermal expansion effects as well as spatial gradients of the attenuation properties. We demonstrate that these effects result in an additional deflection contribution which substantially depends on the distance of the photodetector from the readout point. This distance dependent contribution enhances the surface related PDS signal up to two orders of magnitude and may be misinterpreted as surface absorption if not corrected in the analysis of the measurement data. We verify these findings by PDS measurements on crystalline silicon at a wavelength of 1550 nm and provide guidelines how to extract the actual attenuation coefficient from the PDS signal.Comment: 10 pages, 16 figures, submitted to Journal of Applied Physiv

    Effect of dead space on avalanche speed

    Get PDF
    The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase

    Multi-objective shop floor scheduling using monitored energy data

    Get PDF
    Modern factories will become more and more directly connected to intermittent energy sources like solar systems or wind turbines as part of a smart grid or a self-sufficient supply. However, solar systems or wind turbines are not able to provide a continuous energy supply over a certain time period. In order to enable an effective use of these intermittent energy sources without using temporary energy storages, it is necessary to rapidly and flexibly adapt the energy demand of the factory to the constantly changing requirements of the energy supply. The adaption of the energy demand to the intermittent supply results in different energy-related objectives for the production system of the factory, such as reducing energy consumption, avoiding power peaks, or achieving a power use within the available power supply. Shop Floor Scheduling can help to pursue these objectives within the production system. For this purpose, a solution methodology based on a meta-heuristic will be described for Flexible Job Shop Scheduling taking into account different energy- as well as productivity-related objectives

    LMIs - A fundamental tool in analysis and controller design for discrete linear repetitive processes

    Get PDF
    Discrete linear repetitive processes are a distinct class of two-dimensional (2-D) linear systems with applications in areas ranging from long-wall coal cutting through to iterative learning control schemes. The feature which makes them distinct from other classes of 2-D linear systems is that information propagation in one of the two distinct directions only occurs over a finite durations. This, in turn, means that a distinct systems theory must be developed for them. In this paper, an LMI approach is used to produce highly significant new results on the stability analysis of these processes and the design of control schemes for them. These results are, in the main, for processes with singular dynamics and for those with so-called dynamic boundary conditions. Unlike other classes of 2-D linear systems, these feedback control laws have a firm physical basis, and the LMI setting is also shown to provide a (potentially) very powerful setting in which to characterize the robustness properties of these processes.published_or_final_versio

    The domain of organizational cognitive neuroscience:theoretical and empirical challenges

    Get PDF
    In this editorial, the authors respond to the 2011 article in the Journal of Management by Becker, Cropanzano, and Sanfey, titled “Organizational Neuroscience: Taking Organizational Theory Inside the Neural Black Box.” More specifically, the authors build on the ideas of Becker et al. first to clarify and extend their work and then to explore the critical philosophical issues involved in drawing inferences from neuroscientific research. They argue that these problems are yet to be solved and that organizational researchers who wish to incorporate neuroscientific advances into their work need to engage with them
    corecore