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Abstract 

Modern factories will become more and more directly connected to intermittent energy sources like solar systems or wind turbines as part of a 
smart grid or a self-sufficient supply. However, solar systems or wind turbines are not able to provide a continuous energy supply over a certain 
time period. In order to enable an effective use of these intermittent energy sources without using temporary energy storages, it is necessary to 
rapidly and flexibly adapt the energy demand of the factory to the constantly changing requirements of the energy supply. The adaption of the 
energy demand to the intermittent supply results in different energy-related objectives for the production system of the factory, such as 
reducing energy consumption, avoiding power peaks, or achieving a power use within the available power supply. Shop Floor Scheduling can 
help to pursue these objectives within the production system. For this purpose, a solution methodology based on a meta-heuristic will be 
described for Flexible Job Shop Scheduling taking into account different energy- as well as productivity-related objectives. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Assembly Technology and Factory Management/Technische Universität Berlin. 
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1. Introduction 

The energy supply for factories of the future will 
substantially be based on renewable energies such as wind 
turbines or solar systems as part of a smart grid or a self-
sufficient supply [1]. However, renewable energy sources are 
only able to provide an intermittent energy supply. In order to 
enable an effective use of the renewable energy sources 
without using temporary energy storages, the energy demand 
of the factory should be able to respond rapidly and flexible to 
the constantly changing requirements of the energy supply. As 
a result, reducing energy consumption, avoiding power peaks, 
or achieving a power use within the available supply will 
become vital parts of the objectives for the production system 
of a factory. Shop Floor Scheduling can be used to pursue 
these energy-related objectives for the production system [2]. 

In this paper, a method for monitoring and storing energy 
consumption data streams of the manufacturing equipment 
will be briefly described for the subsequent application within 
Shop Floor Scheduling. For specifying the scheduling problem 
different energy-related objectives for a production system on 
shop floor level will be defined. These energy-related 
objectives then will be used in addition to the productivity-

related objectives to formulate Flexible Job Shop Scheduling 
Problem (FJSSP), as a specific class of Shop Floor Scheduling 
problems. Finally, a meta-heuristic based on a genetic 
algorithm will be used for solving instances of the FJSSP. 

2. Shop Floor Scheduling 

Shop Floor Scheduling (SFS) as part of the Production 
Planning and Control (PPC) ensures the material flow 
throughout the production system by scheduling all present 
jobs in terms of their release date [3]. In other words, all jobs 
are being assigned to manufacturing equipment in a certain 
sequence and with related processing durations [3,4,5]. 
Hereby, a job is defined by a certain lot size of a specific 
product and is often connected to customer orders. It consists 
of a predetermined processing sequence for the manufacturing 
operations for the production of the product. This operation 
sequence can be derived from the work plan in combination 
with the manufacture bill of material for the certain product. 
SFS models can be classified according to their constraints 
[6]. Flow Shop models contain the same machine tool 
sequencing for every job with no parallel machine tools 
available and are often used for one piece flow production 
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systems. Hybrid Flow Shop models have the same sequencing 
for every job but parallel machine tools are available. Hybrid 
Flow Shop models represent flexible flow lines and thus have 
a great significance for the process industry such as chemical, 
pharmaceutical, oil, food, tobacco, textile, paper, and 
metallurgical industry as well as for the automotive industry 
[6]. Within Job Shop models only specific machine tool 
sequencing exists for every job. Open Shop models do not 
have a specific sequencing at all. Each job can thus be 
processed in random sequence on the machine tools. 

2.1. Energy-related Job Floor Scheduling 

The energy-related Job Floor Scheduling problems in 
current research can be classified according to their objective 
functions. The objective functions of energy-related shop 
floor scheduling problems are addressing the total energy 
consumption of a production system [7,8], the power peak 
load [9,10], and electric power costs [11,12]. An approach for 
connecting the aggregated energy consumption of 
manufacturing operations with specific Flexible Shop Floor 
Scheduling Problems has so far not been described in current 
research. 

2.2. Flexible Job Shop Scheduling Models 

The Flexible Job Shop Scheduling model can be applied to 
all different classes of SFS [13]. Usually they are used for the 
modelling of production systems in industries with high 
product variety and medium demand for each product. FJSSP 
includes the assumption that each or some machine tools are 
capable of offering more than one manufacturing operation. 
Thus, the machine tool flexibility can be partial or total, 
referred to as Partially Flexible Job Shop Scheduling Problem 
(PF-JSSP) or Totally Flexible Job Shop Scheduling Problem 
(TF-JSSP). PF-JSSP addresses a special case of F-JSSP where 
each machine tool is not capable to process every operation of 
a job. TF-JSSP in contrast describes the case, where each 
machine tool can process every operation of a job [13].  

2.3. Meta-heuristic for multi-objective shop floor scheduling 

For the efficient solving of FJSSP problems artificial 
immune algorithms as specific class of genetic algorithm are 
often proposed in current research [5,13]. Artificial immune 
algorithms are adaptive systems used within the evolutionary 
computation which is a subfield of artificial intelligence (AI). 
They imitate the behavior of the immune system of living 
organisms, e.g. if the body recognizes foreign substances and 
defeats them, in terms of learning and memory. This process 
is called Antigen-Antibody Reaction. Hereby, antigens 
located on the foreign substances are recognized by a specific 
antibody that is used by the immune system to neutralize the 
substance. The immune system detects the antibodies that 
offer increased potential in neutralizing antigens and spreads 
their variations within the next generation of antibodies. The 
efficiency for neutralizing antigens of an antibody is 
measured by its affinity value [14]. 

For adapting artificial immune algorithms to shop floor 
scheduling problems the following model is applied [13]: (a) 
Antigen: F-JSSP to be solved; (b) Antibody: feasible schedule 
established and (c) Affinity Values: productivity- and/or 
energy-related objectives. 

[5] and [13] have proven that cloning selection algorithms 
as a subtype of artificial immune algorithms are superior to 
other subtypes. These algorithms consist of two main 
operations: (a) Cloning selection and (b) affinity maturation. 
With cloning selection, schedules that are efficient for 
optimizing the objective function for the scheduling problem 
are further evolved. Affinity maturation sets the rate of 
mutation depending on their affinity values. Using the 
approach proposed in [13] the mutation process itself is 
executed using simulated annealing (SA) until a stopping-
criterion is met. SA can be used for finding a good 
approximation to the global optimum in a fixed amount of 
time in a large search space. As a result the meta-heuristic is 
referred to as hybrid of “Artificial Immune algorithm and 
Simulated Annealing” (AISA) according to [13]. 

3. Monitoring strategy and energy-planning database 

The monitoring strategy is used for processing the energy 
data captured from manufacturing equipment. It consists of 
the (a) measuring strategy, (b) evaluation strategy and (c) the 
energy-planning database for production systems and is a 
slightly modified version of the concept carried out in [2]. 

3.1. Measuring strategy 

The measuring strategy represents the starting point for 
acquiring the energy data from the manufacturing system. An 
overview for the measurement of energy data for 
manufacturing equipment is described in [2], [15] and [16]. 
These measuring methods and procedures are responsible for 
acquiring the relevant energy data for the data evaluation 
strategy. The evaluation strategy describes how and which 
parameters are to be computed from the measured energy 
profiles for a subsequent storing in the energy planning 
database [2]. 

3.2. Evaluation Strategy for Manufacturing Equipment 

Figure 1 displays the power consumption profile of a 
machining center for one hour of production. Two typical 
operational states for manufacturing equipment in terms of 
power consumption can be identified in the chart. In the 
process state (1) the manufacturing equipment executes the 
actual machining cycles or in other words the value creation 
[2]. Within the idle state (2) the equipment is ready for 
operation but no machining is carried out. A third and fourth 
operational state where the equipment is in standby (3) or 
switched on/off (4) does not appear in the shown profile. The 
standby is similar to the idle state, but in this state the 
equipment is not ready for operation because required 
components, e.g. auxiliary systems, are turned off. The on/off 
state describes the machine start-up and turn-off. 
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Fig. 1. Evaluation of a power consumption profile of a machining center. 

An overview of all four power consumption parameters is 
given in Table 1. 

Table 1. Overview of power consumption parameters [2]. 

Operational state Power consumption parameter [kW] 

On/off Pon/off Ø 

Standby Pstandby Ø 

Idle Pidle Ø 

Processing Pprocess Ø 

 
Within the data evaluation procedure, the power 

consumption parameters for each operational state are to be 
computed from the captured power consumption profiles. The 
temporal reference interval for calculating the average power 
consumption for the state process (Pprocess) corresponds with 
the time period of a machining cycle. Due to some random 
process variations, e.g. caused by the wear of the tools, the 
mean power consumption may vary slightly for each cycle in 
the processing state [2]. To address that, the average power 
consumption parameter (Pprocess Ø) of all measured numbers of 
machining cycles is calculated [2]. This procedure is 
analogously used for the other three power consumption 
parameters. Since there is no temporal reference given that 
could be used for the state standby and idle, a reference 
interval of 60 s is chosen for calculating the power 
consumption parameters Pstandby Ø and Pidle Ø [2]. The reference 
interval for the fourth power consumption parameter Pon/off Ø, 
is defined by the duration of the start-up and turn-off phase of 
the equipment. 

3.3. Energy-planning database 

For the effective subsequent use of the evaluated data a 
comprehensive data management application is required [2]. 
There are three main determining factors that have an impact 
on the energy consumption of the manufacturing process: (a) 
the manufacturing equipment (machine tool), (b) the 
machining operation and (c) the set of machining parameters. 
These influencing factors set up the three dimensions of a so-
called EnergyCube, as a framework for storing the data. The 
first dimension manufacturing equipment (1) defines the 

power consumption of the states idle, standby and on/off for 
the specific machine tool, since the power consumption of 
these states is in most cases constant for the same equipment. 
In contrast, the power consumption of the state process can 
significantly vary on a machine tool depending on the second 
dimension machining operation (2) and related third 
dimension set of machining parameters (3). Thus, all three 
dimensions in combination determine the state process for a 
specific machine tool. Within Figure 2 the EnergyCube 
database is exemplarily shown for a machine tool (Equipment 
no 1.). Each small cube within the EnergyCube provides a set 
of energy planning data. 

 

Fig. 2. Energy planning database for the manufacturing system. 

4. Energy-related objectives 

Energy-related objectives for PPC and in particular for SFS 
are addressing different energy, power and cost targets: 

a. Energy consumption: 
 

                                                               (1) 
 

                 (2) 
 
The aim is to minimize the total energy consumption of all 

machine tools (1). The energy consumption of a machine tool 
i corresponds to the sum of the energy consumption for the 
process state for processing a job j. In addition, the sum of the 
energy consumed of the idle and standby state as well as the 
energy consumption during turning on/off of a machine tool 
has to be considered (2).  

b. Power peak loads: 
 

                                                         (3)
 

                      (4) 
 
The total power consumption of all machines at one time 

period should be minimized (3).  is the power consumption 
of a machine tool i in time period t (4). 

c. Power use within available supply: 
This objective in terms of SFS is not an objective in the 

mathematical sense. It is rather an optimization constraint:  
 

                                                                         (5) 
 
The power consumption of all machine tools in time period 

t must be equal or below the maximal power supply available 
for this time period  (5). 
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In order to decrease the complexity of the objectives for a 
better practical implementation, objective (3) can also be 
represented using (5): The power peak load should always be 
under a certain threshold value. Thus, objective (3) can be 
modeled as a constraint in a mathematical sense. 

5. Application of the meta-heuristic 

The functioning of the energy-related AISA meta-heuristic 
is described on the basis of a simplified practical planning 
problem in order to enable a full comprehension. This 
problem consists of three jobs and two machine tools. The 
power consumption of a specific operation (Pprocess Ø) for and 
for the idle state (Pidle Ø) of a machine tool is derived from the 
EnergyCube. The planning problem is outlined in Table 2: 

Each job Jj consists of a set of operations Oj,l. All 
operations of a job j must be processed in the given sequence 
{ ; ; ;…} on an eligible machine tool Mi. The 
eligibility parameter takes value 1, if machine tool i can 
process Oj,l and 0 otherwise. For processing an operation a 
machine tool needs a specific process time as well as a 
specific average power consumption (Pprocess Ø). Furthermore 
the average power consumption of machine tool i for being in 
the idle state (Pidle Ø) is considered. 

Table 2. PF-JSSP planning problem (Antigen). 

Machine tool Eligibility 
[0;1] 

Process times 
[s] 

Average power 
consumption [kW] 

Jobs Operations       

 

 0 1 - 5 - 10 
 1 0 3 - 8 - 
 1 1 4 3 6 3 
 1 1 6 5 9 12 

 
 1 0 5 - 15 - 
 1 0 4 - 6 - 
 0 1 - 3 - 8 

 
 1 1 4 4 7 11 
 1 0 5 - 9 - 

    Idle state 2 3 
 
In the following paragraph the AISA algorithm in 

conformity with [13] will be described: 
Step 1: An initialization of antigens is used for a random 

generation of size N of schedules from the feasible region. 
Step 2: Initialize a new mutating pool of size N. Step 3: An 
affinity value is assigned to each schedule according to the 
defined objectives. Step 4: The schedule with the highest 
affinity value in this generation is transferred to the new 
mutating pool. Step 5: N-1 schedules are selected via binary 
tournament, i.e. by comparing the affinity value of always two 
schedules and transferring the superior schedules into the new 
mutating pool. Step 6: Each schedule in the mutating pool 
undergoes an affinity maturing procedure via Simulated 
Annealing (SA) until a stopping criterion is met. Step 7: 
Repeat 2-7 for the new mutating pool until a stopping 
criterion is met. 

In order to enable a better understanding of the algorithm, 
the initialization for the schedules, the affinity value 
assignment, and the affinity procedure via SA will be 
described in the following. 

5.1. Initialization of schedules 

An initial random operations sequence represented by 
integer values is assigned to a random number between 0 and 
1. Hereby, the chronological order of the integers refers to the 
corresponding operation of a job, e.g. the first disposed 
integer 1 refers to the first operation of job 1 and the second 
disposed integer 1 refers to the second operation of job 1 and 
so on. The random values are sorted in a non-rising pattern 
(Table 3). Thus, the operation integer values are sorted 
regarding their assigned random values. This sorted integer 
string is the initial feasible sequence for the schedule. 

Table 3. Initial sorted sequence [13]. 

Random value [0,…,1] 
0,82 0,70 0,67 0,61 0,58 0,58 0,34 0,26 0,15 
Random operations sequence (integer form) 
2 1 2 3 1 1 2 1 3 

 
This integer string corresponds to the following operations 

sequence: { ; ; ; ; ; ; ; ; }. 
Each operation is then assigned to a random integer value for 
a machine tool (Table 4). The maximum of the integer value 
is corresponding to the quantity of eligible machine tools for a 
specific operation, e.g. for  the only possible integer value 
for the machine tool assignment is 1. Hereby, a 1 corresponds 
to the first eligible machine tool for an operation, a 2 for the 
second and so on, e.g. the 1 for  refers to . For each 
operation and machine tool the resulting process time and 
power consumption can be assigned. As a result the 
corresponding affinity value for the schedule can be 
calculated. This initialization procedure is repeated until the 
population size of N schedules is achieved [13]. 

Table 4. Initial representation of an antibody [13]. 

Random value [0,…,1] 
0,82 0,70 0,67 0,61 0,58 0,59 0,34 0,26 0,15 
Random operations sequence (integer form) 
2 1 2 3 1 1 2 1 3 
Random integer for machine tool assignment from the feasible region 
1 1 1 1 1 1 1 2 1 
Machine tool assignment 

         
Process time [t] 
5 5 4 4 3 4 3 5 5 
Power consumption [kW] 
15 10 6 7 8 6 8 12 9 

5.2. Assignment of affinity values 

Since the mutation of antibodies (feasible schedules) 
depends strictly on the affinity value, the affinity value of the 
AISA corresponds directly to the objective function [13]. The 
greater the affinity value gets, the higher is the rate of 
mutation of the antibody. Thus, antibodies with greater 
affinity values evolve superior compared to those with lower 
affinity values. Typical productivity-related objectives, e.g. 
makespan, have to be minimized. In order to make them 
available for being used as affinity value for the meta-
heuristic the reciprocal value is calculated – affinity value = 
1/makespan. For an AISA with multi-objectives to be 
minimized, e.g. makespan and total energy consumption, the 
objectives have to be transformed to one affinity value – as 
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shown in (6) – (9). For comparing the antibodies regarding the 
different objectives the ranking method (6) is used. The 
ranking method is a well-known approach for solving multi-
objective optimization problems [7,17].  

 
                                              (6) 

 
This function results in the following ranking function by 

considering the same weight for both objectives for a schedule 
s in terms of the two objectives makespan and total energy 
consumption: 

 
         (7) 

 
Thus, the affinity value of an antibody corresponds to: 
 

                                                                (8) 
 

For each schedule  in the population of N schedules the 
affinity value is calculated: 
 

  

                                                                                            (9) 
  

where: 

   Minimum of total energy consumption 
    within the decision vector for all  
    

 

  Minimum of makespan within the decision 
    vector for all    
    

  Maximum of makespan within the decision 
    vector for all    
    

5.3. Affinity maturing procedure via SA: 

For affinity maturating the SA is applied in combination with 
a SHIFT operator [13]. The SHIFT Operator generates a new 
sequence of operations for an incumbent schedule . E.g. 
randomly the eighth of the operations values is selected 
(Table 5). Subsequently, a new random value between 0 and 1 
is generated for the selected random value. In our case the 
0,26 changes to 0,52. Thereafter, the random numbers are 
sorted in a non-rising pattern. 

Table 5. Random selection of an operation [13]. 

Random value [0,…,1] 
0,82 0,70 0,67 0,61 0,58 0,59 0,34 0,26 0,15 
Random operations sequence (integer form) 
2 1 2 3 1 1 2 1 3 

For this sequence a predefined number of 10 different 
machine assignments are randomly generated and the one 
with the highest affinity value A is selected and referred to as 

. This machine assignment for one schedule is 
exemplarily shown in Table 6. 

Table 6. Randomly generated machine assignment for the new schedule [13]. 

Random value [0,…,1] 
0,82 0,70 0,67 0,61 0,58 0,59 0,52 0,34 0,15 
Random operations sequence (integer form) 
2 1 2 3 1 1 1 2 3 
Random integer for machine tool assignment from the feasible region 
1 1 1 2 1 2 2 1 1 
Machine tool assignment 

         
Process time [t] 
5 5 4 4 3 3 5 3 5 
Power consumption [kW] 
15 10 6 11 8 3 12 8 9 
 

The new schedule  from the incumbent schedule  
is accepted if the ranking function from the new mutated 
schedule is superior to the original schedule [13]: 

 
                                        (10) 

 
If this is not the case the new mutated schedule is accepted 

with a probability of [18]: 
 

                                                        (11) 

 
where the temperature  decreases according to the 

geometric cooling schedule [18]: 
 

; at each temperature i                                 (12) 
 
Commonly used values of  are between 0,8 and 0,99. The 

initial temperature  is a critical parameter for the success of 
SA and depends on the range of . The initial temperature 
must enable the acceptance of almost any schedule during the 
first iteration. If the schedule  is still not being 
accepted a new iteration will proceed, starting again by 
applying the SHIFT operator to the incumbent schedule . At 
each temperature  a quantity of 15 schedules of  is generated 
by the SA and the search is stopped if after seven consecutive 
temperatures still no improvement in terms of  is 
made [13]. After a schedule  is accepted or the SA is 
stopped for the schedule , the whole affinity maturing 
procedure is applied to the next schedule in the mutating pool. 

6. Practical implementation and industry case 

The application of an energy-related meta-heuristic for a 
shop floor scheduling problem has been tested in the 
automotive industry for a production line with 10 machine 
tools. 

As input the real-time measured power consumption data 
of the machine tools has been used. The real-time data has 
then been evaluated using the EnergyCube data management 
concept. Figure 3 shows exemplarily the average power 
consumption data for the different operational states of a 
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machining center for a specific manufacturing operation 
(milling holes). 

 

 

Fig. 3. Set of energy planning data for a machining center. 

By applying an energy-related meta-heuristic, 15% annual 
energy savings have been achieved for the production line. 
Figure 4 shows the simulated, annual energy-saving potential 
on machine tool level for the production line. 

 

Fig. 4. Energy-saving potential for the machine tools 

7. Summary and conclusion 

Within this paper a methodology for multi-objective shop 
floor scheduling taking into account energy consumption data 
of machine tools has been presented. Therefore, the following 
key-contents have been described: 

 The EnergyCube concept for the evaluation of monitored 
energy data gained from the machine tools 

 Different energy-related objectives for a company 
formulated on the basis of the available data 

 The AISA meta-heuristic for solving flexible job shop 
scheduling problems taking into account different energy- 
as well as productivity-related objectives 

 The potential of the EnergyCube concept and of energy-
related meta-heuristics for a real production line in the 
automotive industry 
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