5,350 research outputs found

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    Directed force chain networks and stress response in static granular materials

    Full text link
    A theory of stress fields in two-dimensional granular materials based on directed force chain networks is presented. A general equation for the densities of force chains in different directions is proposed and a complete solution is obtained for a special case in which chains lie along a discrete set of directions. The analysis and results demonstrate the necessity of including nonlinear terms in the equation. A line of nontrivial fixed point solutions is shown to govern the properties of large systems. In the vicinity of a generic fixed point, the response to a localized load shows a crossover from a single, centered peak at intermediate depths to two propagating peaks at large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur

    On the arithmetic of Krull monoids with infinite cyclic class group

    Get PDF
    Let HH be a Krull monoid with infinite cyclic class group GG and let GPGG_P \subset G denote the set of classes containing prime divisors. We study under which conditions on GPG_P some of the main finiteness properties of factorization theory--such as local tameness, the finiteness and rationality of the elasticity, the structure theorem for sets of lengths, the finiteness of the catenary degree, and the existence of monotone and of near monotone chains of factorizations--hold in HH. In many cases, we derive explicit characterizations

    Data-driven PDE discovery with evolutionary approach

    Full text link
    The data-driven models allow one to define the model structure in cases when a priori information is not sufficient to build other types of models. The possible way to obtain physical interpretation is the data-driven differential equation discovery techniques. The existing methods of PDE (partial derivative equations) discovery are bound with the sparse regression. However, sparse regression is restricting the resulting model form, since the terms for PDE are defined before regression. The evolutionary approach described in the article has a symbolic regression as the background instead and thus has fewer restrictions on the PDE form. The evolutionary method of PDE discovery (EPDE) is described and tested on several canonical PDEs. The question of robustness is examined on a noised data example

    The First Public Release of South Pole Telescope Data: Maps of a 95 deg^2 Field from 2008 Observations

    Get PDF
    The South Pole Telescope (SPT) has nearly completed a 2500 deg^2 survey of the southern sky in three frequency bands. Here, we present the first public release of SPT maps and associated data products. We present arcminute-resolution maps at 150 GHz and 220 GHz of an approximately 95 deg^2 field centered at R.A. 82°.7, decl. –55°. The field was observed to a depth of approximately 17 μK arcmin at 150 GHz and 41 μK arcmin at 220 GHz during the 2008 austral winter season. Two variations on map filtering and map projection are presented, one tailored for producing catalogs of galaxy clusters detected through their Sunyaev-Zel'dovich effect signature and one tailored for producing catalogs of emissive sources. We describe the data processing pipeline, and we present instrument response functions, filter transfer functions, and map noise properties. All data products described in this paper are available for download at http://pole.uchicago.edu/public/data/maps/ra5h30dec-55 and from the NASA Legacy Archive for Microwave Background Data Analysis server. This is the first step in the eventual release of data from the full 2500 deg^2 SPT survey

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Corpus Callosal Microstructure Influences Intermanual Transfer in Chimpanzees

    Get PDF
    Learning a new motor skill with one hand typically results in performance improvements in the alternate hand. The neural substrates involved with this skill acquisition are poorly understood. We combined behavioral testing and non-invasive brain imaging to study how the organization of the corpus callosum was related to intermanual transfer performance in chimpanzees. Fifty-three chimpanzees were tested for intermanual transfer of learning using a bent-wire task. Magnetic resonance and diffusion tensor images were collected from 39 of these subjects. The dominant hand showed greater performance benefits than the nondominant hand. Further, performance was associated with structural integrity of the motor and sensory regions of the CC. Subjects with better intermanual transfer of learning had lower fractional anisotropy values. The results are consistent with the callosal access model of motor programming

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig

    On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system

    Full text link
    In a previous work \cite{An1} matter models such that the energy density ρ0,\rho\geq 0, and the radial- and tangential pressures p0p\geq 0 and q,q, satisfy p+qΩρ,Ω1,p+q\leq\Omega\rho, \Omega\geq 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, [R0,R1],R0>0,[R_0,R_1], R_0>0, satisfies R1/R0<1/4.R_1/R_0<1/4. Moreover, given a sequence of solutions such that R1/R01,R_1/R_0\to 1, then the limit supremum of 2M/R12M/R_1 was shown to be bounded by ((2Ω+1)21)/(2Ω+1)2.((2\Omega+1)^2-1)/(2\Omega+1)^2. In this paper we show that the hypothesis that R1/R01,R_1/R_0\to 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R12M/R_1 is bounded, but that the limit is ((2Ω+1)21)/(2Ω+1)2=8/9,((2\Omega+1)^2-1)/(2\Omega+1)^2=8/9, since Ω=1\Omega=1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R12M/R_1 arbitrary close to 8/9,8/9, which is interesting in view of \cite{AR2}, where numerical evidence is presented that 8/9 is an upper bound of 2M/R12M/R_1 of any static solution of the spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late
    corecore