5,350 research outputs found
Random trees between two walls: Exact partition function
We derive the exact partition function for a discrete model of random trees
embedded in a one-dimensional space. These trees have vertices labeled by
integers representing their position in the target space, with the SOS
constraint that adjacent vertices have labels differing by +1 or -1. A
non-trivial partition function is obtained whenever the target space is bounded
by walls. We concentrate on the two cases where the target space is (i) the
half-line bounded by a wall at the origin or (ii) a segment bounded by two
walls at a finite distance. The general solution has a soliton-like structure
involving elliptic functions. We derive the corresponding continuum scaling
limit which takes the remarkable form of the Weierstrass p-function with
constrained periods. These results are used to analyze the probability for an
evolving population spreading in one dimension to attain the boundary of a
given domain with the geometry of the target (i) or (ii). They also translate,
via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main
modifications in Sect. 5-6 and conclusio
Directed force chain networks and stress response in static granular materials
A theory of stress fields in two-dimensional granular materials based on
directed force chain networks is presented. A general equation for the
densities of force chains in different directions is proposed and a complete
solution is obtained for a special case in which chains lie along a discrete
set of directions. The analysis and results demonstrate the necessity of
including nonlinear terms in the equation. A line of nontrivial fixed point
solutions is shown to govern the properties of large systems. In the vicinity
of a generic fixed point, the response to a localized load shows a crossover
from a single, centered peak at intermediate depths to two propagating peaks at
large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur
On the arithmetic of Krull monoids with infinite cyclic class group
Let be a Krull monoid with infinite cyclic class group and let denote the set of classes containing prime divisors. We study under
which conditions on some of the main finiteness properties of
factorization theory--such as local tameness, the finiteness and rationality of
the elasticity, the structure theorem for sets of lengths, the finiteness of
the catenary degree, and the existence of monotone and of near monotone chains
of factorizations--hold in . In many cases, we derive explicit
characterizations
Data-driven PDE discovery with evolutionary approach
The data-driven models allow one to define the model structure in cases when
a priori information is not sufficient to build other types of models. The
possible way to obtain physical interpretation is the data-driven differential
equation discovery techniques. The existing methods of PDE (partial derivative
equations) discovery are bound with the sparse regression. However, sparse
regression is restricting the resulting model form, since the terms for PDE are
defined before regression. The evolutionary approach described in the article
has a symbolic regression as the background instead and thus has fewer
restrictions on the PDE form. The evolutionary method of PDE discovery (EPDE)
is described and tested on several canonical PDEs. The question of robustness
is examined on a noised data example
The First Public Release of South Pole Telescope Data: Maps of a 95 deg^2 Field from 2008 Observations
The South Pole Telescope (SPT) has nearly completed a 2500 deg^2 survey of the southern sky in three frequency bands. Here, we present the first public release of SPT maps and associated data products. We present arcminute-resolution maps at 150 GHz and 220 GHz of an approximately 95 deg^2 field centered at R.A. 82°.7, decl. –55°. The field was observed to a depth of approximately 17 μK arcmin at 150 GHz and 41 μK arcmin at 220 GHz during the 2008 austral winter season. Two variations on map filtering and map projection are presented, one tailored for producing catalogs of galaxy clusters detected through their Sunyaev-Zel'dovich effect signature and one tailored for producing catalogs of emissive sources. We describe the data processing pipeline, and we present instrument response functions, filter transfer functions, and map noise properties. All data products described in this paper are available for download at http://pole.uchicago.edu/public/data/maps/ra5h30dec-55 and from the NASA Legacy Archive for Microwave Background Data Analysis server. This is the first step in the eventual release of data from the full 2500 deg^2 SPT survey
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
Corpus Callosal Microstructure Influences Intermanual Transfer in Chimpanzees
Learning a new motor skill with one hand typically results in performance improvements in the alternate hand. The neural substrates involved with this skill acquisition are poorly understood. We combined behavioral testing and non-invasive brain imaging to study how the organization of the corpus callosum was related to intermanual transfer performance in chimpanzees. Fifty-three chimpanzees were tested for intermanual transfer of learning using a bent-wire task. Magnetic resonance and diffusion tensor images were collected from 39 of these subjects. The dominant hand showed greater performance benefits than the nondominant hand. Further, performance was associated with structural integrity of the motor and sensory regions of the CC. Subjects with better intermanual transfer of learning had lower fractional anisotropy values. The results are consistent with the callosal access model of motor programming
Critical collapse of collisionless matter - a numerical investigation
In recent years the threshold of black hole formation in spherically
symmetric gravitational collapse has been studied for a variety of matter
models. In this paper the corresponding issue is investigated for a matter
model significantly different from those considered so far in this context. We
study the transition from dispersion to black hole formation in the collapse of
collisionless matter when the initial data is scaled. This is done by means of
a numerical code similar to those commonly used in plasma physics. The result
is that for the initial data for which the solutions were computed, most of the
matter falls into the black hole whenever a black hole is formed. This results
in a discontinuity in the mass of the black hole at the onset of black hole
formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using
psfig
On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system
In a previous work \cite{An1} matter models such that the energy density
and the radial- and tangential pressures and
satisfy were considered in the context of
Buchdahl's inequality. It was proved that static shell solutions of the
spherically symmetric Einstein equations obey a Buchdahl type inequality
whenever the support of the shell, satisfies
Moreover, given a sequence of solutions such that then the
limit supremum of was shown to be bounded by
In this paper we show that the hypothesis
that can be realized for Vlasov matter, by constructing a
sequence of static shells of the spherically symmetric Einstein-Vlasov system
with this property. We also prove that for this sequence not only the limit
supremum of is bounded, but that the limit is
since for Vlasov matter.
Thus, static shells of Vlasov matter can have arbitrary close to
which is interesting in view of \cite{AR2}, where numerical evidence is
presented that 8/9 is an upper bound of of any static solution of the
spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late
- …